Highly Selective Diels-Alder Reactions of Dienophiles with 1,3-cyclohexadiene Mediated by Yb(OTf)₃·2H₂O and Ultra High Pressures (Supporting Information).

Aaron C. Kinsman and Michael A. Kerr

Experimental

General

Melting points were determined using a Gallenkamp melting point apparatus and are uncorrected. Infrared spectra were recorded on a Perkin Elmer 2000 FT-IR instrument as thin films on NaCl plates. NMR experiments were performed on a Varian INOVA 400 or Mercury 400 instrument (unless otherwise indicated) and spectra were obtained in CDCl₃ (referenced to residual CHCl₃ at 7.26 ppm for ¹H or solvent at 77.00 ppm for ¹³C). Coupling values (*J*) are in Hz. Diastereomeric excesses were determined by integrations of well separated peaks of the mixtures of adducts. For inseparable diastereomers, minor (*exo*-product) resonances are indicated in square brackets. Mass spectra were obtained on a Finnigan MAT 8200 spectrometer at 70 eV or as noted. Elemental analyses were performed at Chemisar Laboratories Inc., Guelph, Ontario.

Hyperbaric conditions were achieved using a LECOTM Tempres high pressure chemical reactor. Dichloromethane (DCM), toluene and THF were distilled according to the standard procedures.¹ *trans*-Cinnamaldehyde was distilled prior to use. All other reagents were used as purchased from Aldrich or Lancaster. Reactions were checked for completion by TLC (EM Science, silica gel 60 F₂₅₄) and/or ¹H NMR. Flash chromatography (FC) was done using silica gel purchased from Silicycle Chemical Division Inc. (230-400 Mesh).

Procedures

1-[(1S*,2R*,3R*,4S*)-3-phenylbicyclo[2.2.2]oct-5-en-2-yl]ethanone (*endo-9*) and 1-[(1S*,2S*,3S*,4S*)-3-phenylbicyclo[2.2.2]oct-5-en-2-yl]ethanone (*exo-9*). A mixture of benzylidene acetone **8** (1.07 g, 7.32 mmol) and 1,3-cyclohexadiene **7** (2.80 mL, 29.4 mmol) were heated in a sealed tube at 180-220 °C for 4 d. After cooling to RT, excess **7** was removed *in vacuo* and the remaining residue purified by FC (50:50, DCM:hexane) to afford *endo-9* (788 mg, 47%) and *exo-9* (457 mg, 28%) as a colorless oils. *endo-9*: See Table 1 for NMR data and assignments and Figure 1 for numbering and relevant NOESY correlations; IR 1710, 1600, 1498 cm⁻¹; MS m/z (relative intensity) 226 (M⁺, 27), 147 (100), 80 (72); HRMS calcd for C₁₆H₁₈O: 226.1358, found: 226.1355. *exo-9*: See Table 2 for NMR data and assignments and Figure 2 for numbering and relevant NOESY correlations; IR 1707, 1603, 1495 cm⁻¹; MS m/z (relative intensity) 226 (M⁺, 5), 147 (94), 80 (100); HRMS calcd for C₁₆H₁₈O: 226.1358, found: 226.1357.

_

⁽¹⁾ Perrin, D. D.; Armarego, W. L. F. In *Purification of Laboratory Chemicals*, 3rd ed.; Pergamon: New York, 1988.

Diethyl 3-(N-tosylindolylidene)malonate (10h). Similar to a literature method,² a mixture of toluene (15 mL), N-tosylindole-3-carboxaldehyde³ (1.58 g, 5.29 mmol), diethylmalonate (0.85 mL, 5.60 mmol), piperidine (0.11 mL, 1.11 mmol), HOAc (0.15 mL, 2.62 mmol) and 4 Å molecular sieves (1.5 g) were refluxed for 22 h. The reaction mixture was cooled to RT and filtered through CeliteTM. The filtrate was washed with water, separated and the organics dried over MgSO₄, filtered and concentrated in vacuo. The crude residue was purified by FC (Et₂O:hexanes, 1:1) then recrystallized (DCM/hexanes) to afford **10h** (1.03 g, 44%): mp 108-109 °C (DCM/hexanes); ¹H NMR (Varian Gemini, 300 MHz) δ 8.00-7.96 (m, 2H), 7.87 (d, J = 0.8, 1H), 7.81-7.76 (m, 2H), 7.66 (dd, J = 6.6, 1.8, 1H), 7.42-7.30 (m, 2H), 7.26-7.23 (m, 2H), 4.41 (q, J = 7.1, 2H), $4.32 \text{ (q, J} = 7.1, 2\text{H)}, 2.35 \text{ (s, 3H)}, 1.36 \text{ (t, J} = 7.1, 3\text{H)}, 1.34 \text{ (t, J} = 7.1, 3\text{H)}; {}^{13}\text{C NMR } \delta$ 166.64, 164.10, 145.58, 134.62, 134.41, 131.71, 130.07, 129.65, 127.16, 126.98, 125.50, 125.42, 123.93, 119.13, 115.15, 113.59, 61.95, 61.61, 21.59, 14.16, 14.02; IR 1733, 1626, 1250 cm⁻¹; MS m/z (relative intensity) 441 (M⁺, 77), 212 (29), 140 (86), 91 (100), 77 (84); Anal. Calcd for C₂₃H₂₃NO₆S: C, 62.57; H, 5.25; N, 3.18. Found: C, 62.72; H, 5.34; N, 3.18.

3-(N-tosylindolylidene)acetone (10i). A mixture of 3-(indolylidene)acetone⁴ (1.78 g, 9.83 mmol), K_2CO_3 (5.47 g, 39.6 mmol), TsCl (3.95 g, 20.7 mmol) and THF (40 mL) were heated at reflux for 60 h then cooled to RT in a fashion similar to a literature protocol.³ The reaction mixture was diluted with water and EtOAc (~50 mL each) and separated. The aqueous portion was extracted again with EtOAc and then the combined organics were washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. The crude product was purified by successive FC (EtOAc:Hexane, 1:2) and hexane trituration to afford **10i** (2.95 g, 88%): mp 117-120 °C (DCM/hexanes); ¹H NMR δ 7.99 (d, J = 9.0, 1H), 7.86 (s, 1H), 7.80-7.77 (m, 3H), 7.61 (d, J = 16.4, 1H), 7.37 (ddd, J = 8.2, 7.4, 1.2, 1H), 7.32 (ddd, J = 7.8, 7.4, 1.2, 1H), 7.25-7.33 (m, 2H), 6.80 (d, J = 16.4, 1H), 2.37 (s, 3H), 2.34 (s, 3H); ¹³C NMR δ 198.12, 145.59, 135.55, 134.57, 134.40, 130.08, 128.75, 127.95, 127.10, 126.94, 125.55, 124.10, 120.64, 118.06, 113.78, 27.51, 21.56; IR 1666, 1627, 1609, 1448, 1375, 1176, 976 cm⁻¹; MS m/z (relative intensity) 339 (M⁺,71), 184 (100), 155 (22), 91 (55); Anal. Calcd for C₁₉H₁₇NO₃S: C, 67.24; H, 5.05; N, 4.13. Found: C, 66.89; H, 4.99; N, 4.11.

Phenyl[(1S*,2R*,3R*,4S*)-3-phenylbicyclo[2.2.2]oct-5-en-2-yl]methanone (endo-11a) and 1-[(1S*,2S*,3S*,4S*)-3-phenylbicyclo[2.2.2]oct-5-en-2-yl]methanone (exo-11a). According to the general cycloaddition procedure. FC (50:50, DCM:hexanes) afforded a white crystalline solid (285 mg, 94%) found to be a mixture of 95:5 endo:exo. Further FC (33:67, DCM:hexanes) permitted isolation of the isomers or alternatively, the exo-isomer could be removed by recrystallization. White solid endo-11a: mp 124-125 °C

⁽²⁾ Perron, Y. G.; Minor, W. F. J. Org. Chem. 1959, 24, 1165.

⁽³⁾ Evans, D. D. Aust. J. Chem. 1973, 26, 2555.

⁽⁴⁾ Bergman, J. Acta Chem. Scand. 1972, 26, 970.

(DCM/hexanes); See Table 3 for NMR data and assignments and Figure 3 for numbering and relevant NOESY correlations; IR 1685, 1448 cm⁻¹; MS m/z (relative intensity) 288 (M⁺, 25), 209 (100), 131 (19), 105 (49), 80 (49); Anal. Calcd for C₂₁H₂₀O: C, 87.46; H, 6.99. Found: C, 87.27; H, 7.05. Colorless film exo-11a: ¹H NMR δ 7.93 (app d, J = 8.2, 2H), 7.53 (m, 1H), 7.44 (m, 2H), 7.21 (m, 2H), 7.15 (m, 1H), 6.54 (app t, J = 7.8, 6.7, 1H), 6.48 (app t, J = 7.8, 6.6, 1H), 3.78 (d, J = 6.6, 1H), 3.57 (dd, J = 6.3, 1.6, 1H), 2.88 (m, 1H), 2.82 (m, 1H), 1.90-1.84 (m, 1H), 1.61-1.54 (m, 1H), 1.36-1.28 (m, 1H), 1.12-1.05 (m, 1H); ¹³C NMR δ 200.31, 147.02, 136.70, 134.49, 133.47, 132.80, 128.57, 128.39, 128.25, 127.42, 125.91, 55.85, 43.70, 36.24, 34.50, 26.50, 19.19; IR 1679, 1447 cm⁻¹; MS (CI: isobutane) m/z (relative intensity) 289 (M+H, 100), 209 (42), 105 (8); HRMS calcd for C₂₁H₂₁O (M+H): 289.1592, found: 289.1315.

 $1-[(1S^*,2S^*,3R^*,4S^*)-3-methylbicyclo[2.2.2]oct-5-en-2-vl]ethanone (endo-11b) and$ $1-[(1S^*,2R^*,3S^*,4S^*)-3-methylbicyclo[2.2.2]oct-5-en-2-yl]ethanone (exo-11b).$ mixture of 3-penten-2-one 10a (167 mg, 1.98 mmol) and cyclohexadiene 7 (0.47 mL, 4.9 mmol) were heated in a sealed tube at 180-220 °C for 4 d. After cooling to RT, excess 7 was removed *in vacuo* and the remaining residue purified by FC (10:90, EtOAc:hexane) to afford each isomer contaminated with polymeric material. Each sample was dissolved in hexanes, treated with charcoal, filtered through CeliteTM and concentrated to afford *endo-11b* (136 mg, 42%) and *exo-11b* (79 mg, 24%) as colorless oils. *endo-11b*: ¹H NMR δ 6.38 (dd, J = 7.9, 7.0, 1H), 6.08 (app t, J = 7.9, 6.7, 1H), 2.79 (m, 1H), 2.28 (m, 1H), 2.11 (s, 3H), 2.06 (d, J = 6.2, 1H), 1.90-1.86 (m, 1H), 1.80-1.73 (m, 1H), 1.58-1.49(m, 2H), 1.35-1.27 (m, 1H), 1.09 (d, J = 7.0, 3H); ¹³C NMR δ 210.02, 136.74, 130.52, 60.45, 35.86, 33.65, 32.78, 28.23, 26.05, 19.89, 18.04; IR 1709, 1369, 1354 cm⁻¹; MS m/z (relative intensity) 164 (M^+ , 19), 121 (10), 93 (45), 80 (100); HRMS calcd for $C_{11}H_{16}O$: 164.1201, found: 164.1204. *exo-11b*: ¹H NMR δ 6.30 (app t, J = 7.6, 7.0, 1H), 6.20 (app t, J = 7.6, 6.6, 1H), 2.77 (m, 1H), 2.30 (m, 1H), 2.21 (app t, J = 7.0, 6.6, 1H), 2.15 (s, 3H), 1.92 (m, 1H), 1.50-1.46 (m, 1H), 1.38-1.31 (m, 1H), 1.23-1.16 (m, 1H), 1.06-0.98 (m, 1H), 0.77 (d, J = 6.6, 3H); 13 C NMR δ 209.83, 133.75, 133.05, 60.43, 36.58, 32.83, 29.32, 25.36, 22.79, 19.55; IR 1707, 1374, 1352 cm⁻¹. Alternatively, *endo-11b* was prepared according to the general procedure. Following FC (15:85, EtOAc:hexane), the mixture of isomers was distilled (52-65 °C at ~0.35 mm Hg) to afford endo-11b (221 mg, 68%, 87% de): Anal. Calcd for C₁₁H₁₆O: C, 80.44; H, 9.82. Found: C, 80.08; H, 9.65.

1-[(1*S**,2*R**,3*R**,4*S**)-3-isopropylbicyclo[2.2.2]oct-5-en-2-yl]ethanone (*endo*-11c) and **1-**[(1*S**,2*S**,3*S**,4*S**)-3-isopropylbicyclo[2.2.2]oct-5-en-2-yl]ethanone (*exo*-11c). According to the general cycloaddition procedure. FC (33:67, DCM:hexanes) afforded a colorless oil *endo*-11c (189 mg, 67%) and impure colorless film *exo*-11c (<3 mg, <1%). *endo*-11c: 1 H NMR δ 6.40 (app t, J = 7.5, 1H), 5.96 (app t, J = 7.5, 6.6, 1H), 2.76 (m, 1H), 2.59 (m, 1H), 2.23 (app d, J = 5.5, 1H), 2.14 (s, 3H), 1.66-1.51 (m, 3H), 1.40-1.29 (m, 2H), 1.06-0.99 (m, 1H), 0.90 (d, J = 6.6, 3H), 0.75 (d, J = 6.6, 3H); 13 C NMR δ 209.97, 137.50, 129.81, 59.10, 45.07, 33.94, 31.73, 31.35, 28.56, 26.54, 22.31, 20.95, 18.25; IR 2948, 1710, 1471 cm⁻¹; MS *m/z* (relative intensity) 192 (M⁺, 22), 149 (26), 113 (38), 80 (100); HRMS calcd for C₁₃H₂₀O: 192.1514, found: 192.1516. *exo*-11c: 1 H NMR δ 6.30 (app t, J = 7.6, 6.6, 1H), 6.21 (app t, J = 7.6, 7.0, 1H), 2.76 (m, 1H), 2.62 (m,

1H), 2.20 (s, 3H), 2.17 (m, 1H), 1.86 (m, 1H), 1.53-1.45 (m, 1H), 0.86 (d, J = 6.6, 3H), 0.66 (d, J = 6.6, 3H); ¹³C NMR δ 209.90, 133.84, 132.77, 57.85, 45.54, 33.22, 33.13, 32.18, 29.69, 25.32, 20.86, 20.26, 20.18.

(1*S**,4*S**,5*R**,6*S**)-5-nitro-6-phenylbicyclo[2.2.2]oct-2-ene (*endo*-11g).⁵ According to the general cycloaddition procedure. FC (50:50, DCM:hexanes) afforded a viscous colorless oil (195 mg, 83%, 92% de) which gave a white solid upon trituration with hexanes: mp 47-48 °C; ¹H NMR δ 7.40-7.36 (m, 2H), 7.30-7.23 (m, 3H), 6.63 (dd, J = 7.9, 7.1, 1H), [6.41 (app t, J = 7.5, 1H)], [6.37 (app t, J = 7.5, 1H)], 6.21 (app t, J = 7.1, 1H), 4.91 (dd, J = 5.3, 2.1, 1H), [4.55 (m, 1H)], [3.75 (d, J = 5.6, 1H)], 3.53 (app t, J = 2.6, 2.1, 1H), 3.43 (m, 1H), [3.37 (m, 1H)], [2.81 (m, 1H)], 2.71 (dd, J = 6.2, 2.6, 1H), 1.77-1.70 (m, 1H), 1.66-1.50 (m, 2H), 1.10-1.02 (m, 1H); ¹³C NMR δ 139.64, 136.72, [135.57], [130.09], 129.00, 128.69, [128.51], [128.46], 127.53, [127.21], 126.88, [92.65], 88.74, 47.79, [46.23], 36.67, [36.24], [36.08], 35.26, [26.01], 23.37, [18.21], 17.28; IR 2959, 1540, 1370 cm⁻¹; MS m/z (relative intensity) 182 (44), 154 (54), 91 (34), 80 (100); Anal. Calcd for C₁₄H₁₅NO₂: C, 73.34; H, 6.59; N, 6.11. Found: C, 73.52; H, 6.73; N, 6.14.

Diethyl-(1S*,3S*,4S*)-3-{1-tosyl-1*H*-indol-3-yl}bicyclo[2.2.2]oct-5-ene-2,2-

dicarboxylate (endo-11h). According to the general cycloaddition procedure with the exceptions noted in Table 2. FC (1:4, EtOAc:hexanes) afforded a white solid (98 mg, 79%, 60% de): mp 146-147 °C (DCM/hexanes); ¹H NMR δ [7.97 (d, 8.2, 1H)], 7.91 (app d, J = 8.2, 1H), [7.77 (d, 8.6, 1H)], 7.71 (m, 3H), 7.35 (s, 1H), 7.32 (s, 1H), 7.24-7.18 (m, 3H), 7.35 (s, 1H), 7.35 (s, 1H),4H), 6.73 (app t, J = 7.4, 7.0, 1H), 6.51 (app t, J = 7.4, 7.0, 1H), [6.12 (app t, J = 7.0, 1H)], 4.40 (s, 1H), [4.37 (s, 1H)], 4.26-4.11 (m, 2H), [3.45 (m, 1H), 3.37 (m, 1H)] 3.21 (m, 1H), 3.03-2.95 (m, 1H), [2.86-2.81 (m, 1H)], 2.76 (br s, 1H), [2.56 (m, 1H), 2.31 (s, 3H)], 2.29 (s, 3H), 2.09-2.01 (m, 1H), [1.99-1.93 (m, 1H)], 1.71-1.67 (m 1H), 1.46-1.36 (m, 1H), 1.33-1.25 (m, 1H), 1.19 (t, J = 7.0, 3H), [1.16-1.05 (m, 1H), 0.29 (t, J = 7.0, 1H), 1.33-1.25 (m, 1H), 1.33-1.25 (m3H)], 0.29 (t, J = 7.0, 3H); 13 C NMR δ 171.75, [171.43, 170.25], 169.39, [144.75], 144.52, [137.96], 135.74, [135.25], 134.98, [133.98], 133.69, 132.29, [132.06], 130.98, [130.68, 129.74], 129.62, 126.89, [126.82], 125.09, [124.66], 124.35, 123.02, 122.93, [122.40, 121.47], 120.68, [119.85, 113.11], 113.02, 67.16, 61.55, [60.67, 60.04], 59.46. 40.57, 36.11, 35.11, 35.98, [35.92, 34.98, 34.80, 31.50], 24.28, [22.58], 21.63, [21.44], 21.37, [20.22, 18.63, 14.06], 13.95, [12.86], 12.28; IR 1728, 1246, 1197, 1178 cm⁻¹; MS m/z (relative intensity) 521 (M⁺, 21), 441 (90), 369 (31), 212 (25), 155 (20), 91 (100); Anal. Calcd for C₂₉H₃₁NO₆S: C, 66.78; H, 5.99; N, 2.69. Found: C, 66.64; H, 6.02; N, 2.67.

1-((1*S**,2*R**,3*R**,4*S**)-3-{1-tosyl-1H-indol-3-yl}bicyclo[2.2.2]oct-5-en-2-yl)ethanone (*endo-11i*). According to the general cycloaddition procedure. FC (1:4, EtOAc:hexanes) afforded a white solid (165 mg, 78%, >95% de): mp 146-147 °C (DCM/hexanes); ¹H

4

.

⁽⁵⁾ Only boiling point and combustion analysis data were reported previously for **11g**: Allen, C. F. H.; Bell, A.; Gates Jr., J. W. *J. Org. Chem.* **1943**, 8, 373. Allen, C. F. H.; Bell, A. *J. Am. Chem. Soc.* **1939**, *61*, 521.

NMR δ 7.95 (dd, 8.2, 0.8, 1H), 7.70 (app d, J = 8.2, 2H), 7.51 (dd, 7.8, 0.8, 1H), 7.43 (s, 1H), 7.30 (ddd, J = 8.2, 7.4, 1.2, 1H), 7.22 (app t, J = 7.8, 1H), 7.19 (app d, J = 8.2, 2H), 6.45 (app t, J = 7.8, 7.0, 1H), 6.20 (app t, J = 7.4, 7.0, 1H) 3.30 (br d, J = 6.6, 1H), 3.00 (m, 1H), 2.85 (d, J = 6.6, 1H), 2.65 (m, 1H), 2.31 (s, 3H), 2.05 (s, 3H), 1.76-1.68 (m 1H), 1.53-1.46 (m, 1H), 1.43-1.35 (m, 1H), 1.03-0.96 (m, 1H); ¹³C NMR δ 208.31, 144.89, 135.61, 135.20, 134.91, 131.31, 130.75, 129.78, 126.61, 124.95, 124.85, 123.16, 122.31, 119.65, 113.81, 56.02, 36.11, 34.42, 32.53, 28.32, 25.92, 21.49, 18.62; IR 1707, 1368, 1175 cm⁻¹; MS m/z (relative intensity) 419 (M⁺, 7), 339 (52), 184 (67), 91 (100); Anal. Calcd for C₂₅H₂₅NO₃S: C, 71.57; H, 6.01; N, 3.34. Found: C, 71.51; H, 6.15; N, 3.33. Also isolated from the above FC was a colorless gum (~10 mg) found to contain approximately a 5:1 mixture of *endo-11i* and *exo-11i*: ¹H NMR (minor signals) δ 7.84 (d, 8.2), .6.23 (app t, J = 7.0), 3.61 (d, J = 5.5), 2.90 (m), 2.69 (m), 2.54 (m), 2.09 (s), 1.98 (s).

Figure 1. Numbering for *endo-9* and relevant NOESY correlation.

Table 1. ¹H and ¹³C NMR Data for *endo-9* in CDCl₃ at 400 MHz.

_			3	
	Position	δС	δH , m, J in Hz	HMBC $(H \rightarrow C)^a$
	1	32.33	3.00 m	3, 8
	2	56.20	2.92 m	1, 6, 7, 9, 11
	3	45.19	3.10 d 6.7	2, 4, 5, 8, 9, 11, 12
	4	37.01	2.51 m	2
	5	135.76	6.45 app t, 7.5, 7.1	1, 4
	6	131.32	6.20 app t, 7.5, 6.7	1, 4
	7	25.77	1.63-1.72 m	$2, 3, 4, 5, 6^b$
			1.40-1.47 m	1, 2, 6, 8
	8	18.17	1.63-1.72 m	$2, 3, 4, 5, 6^b$
			0.99-1.05 m	3
	9	208.64	-	-
	10	28.16	2.01 s^{c}	9
	11	142.41	-	-
	12	127.90		
	13	128.34	$7.22-7.35 \text{ m}^d$	11, 12, 13, 14
	14	126.18		
-	<i>a</i>	2 - 1 3 -	1: CO II hou : 1	1'0' ' '1 '.' CIIT 1 IIO

^aCorrelations for ${}^{2}J_{\text{C-H}}$ and ${}^{3}J_{\text{C-H}}$ couplings of 8 Hz. ^bChemical shift similarities of H7 and H8 precluded differentiation of correlations. ^c3H. ^d5H.

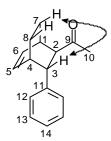
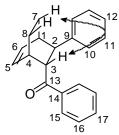


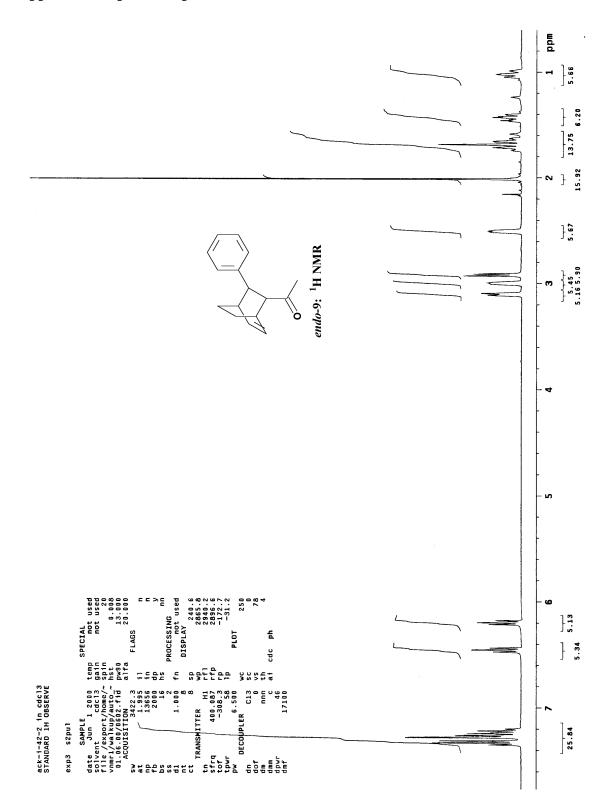
Figure 2. Numbering for *exo-9* and relevant NOESY correlation.

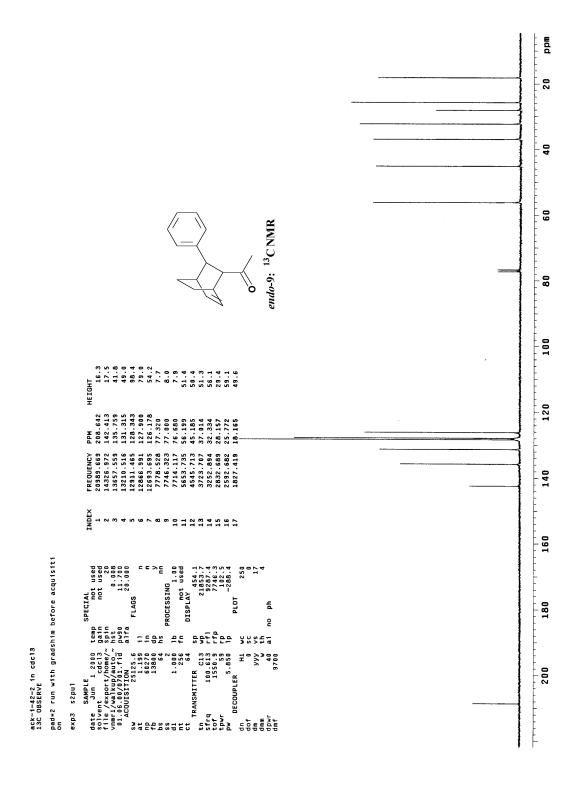
Table 2. ¹H and ¹³C NMR Data for *exo-9* in CDCl₃.

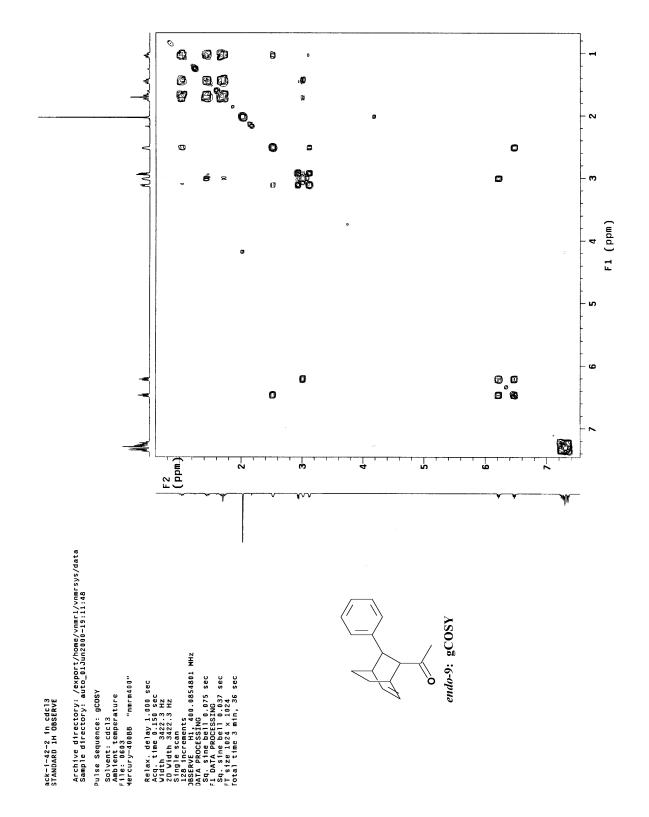
Tuble 2. If the CTANIK Buth for two 7 in CBC13.			
Position	δC	$\delta H (m, J \text{ in Hz})$	$HMBC (H \rightarrow C)^a$
1	32.82	2.99 m	-
2	61.02	2.71 m	$1, 3, 5, 7, 9, 11^b$
3	43.67	3.48 d 6.7	2, 4, 5, 8, 9, 11, 12
4	36.56	2.71 m	$1, 3, 5, 7, 9, 11^b$
5	134.04	6.40 app t, 7.6, 7.2	1, 4
6	133.50	6.51 app t, 7.6, 6.7	1, 4
7	19.46	1.21-1.45 m	8
		1.51-1.58 m	-
8	26.42	1.27-1.35 m	7
		1.72-1.77 m	-
9	208.62	-	-
10	29.24	2.16 s^{c}	9
11	146.78	-	-
12	125.88		
13	127.36	$7.15-7.29 \text{ m}^d$	3, 11, 12, 13, 14
14	128.13		
ac 1	c 2 x 1 3 x	1. COTT has	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

^aCorrelations for ${}^2J_{\text{C-H}}$ and ${}^3J_{\text{C-H}}$ couplings of 8 Hz. ^bSince chemical shifts of 2 and 4 are identical the correlations cannot be differentiated. ^c3H. ^d5H.

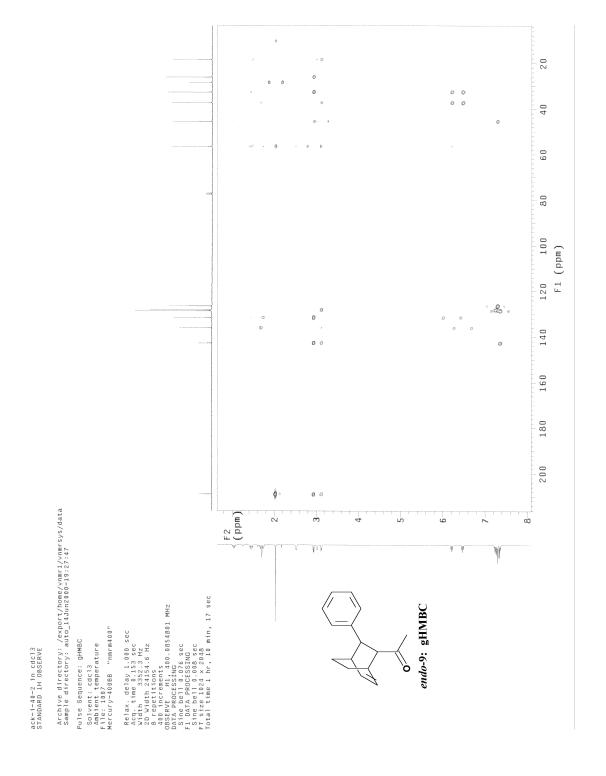


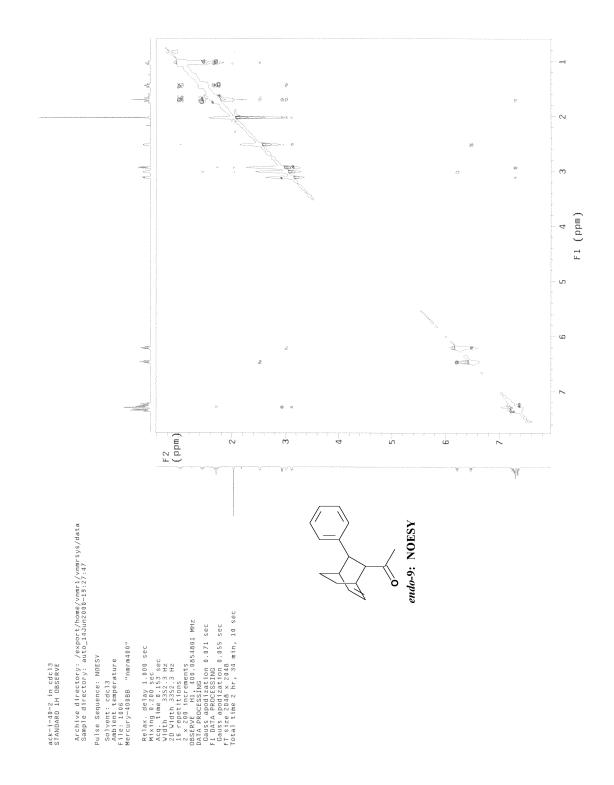

Figure 3. Numbering for *endo-11a* and selected NOESY correlations.

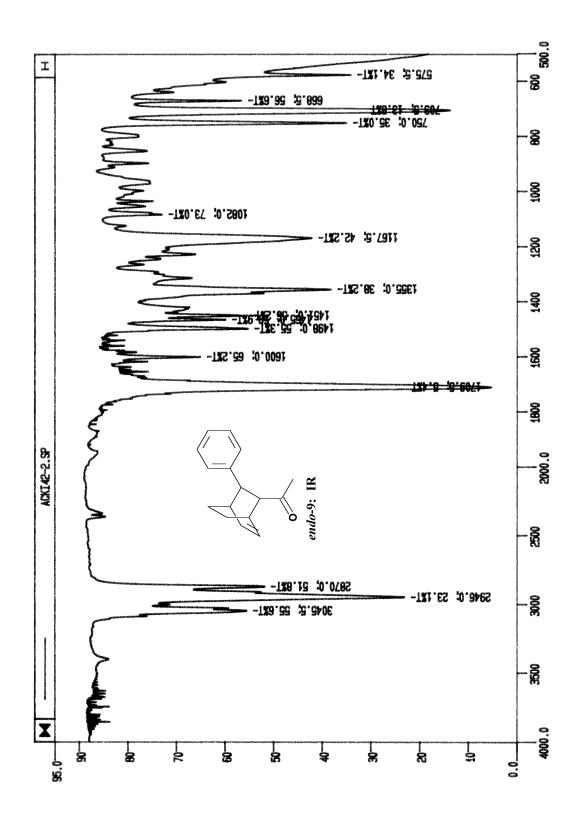

Table 3. ¹H and ¹³C NMR Data for *endo-11a* in CDCl₃.

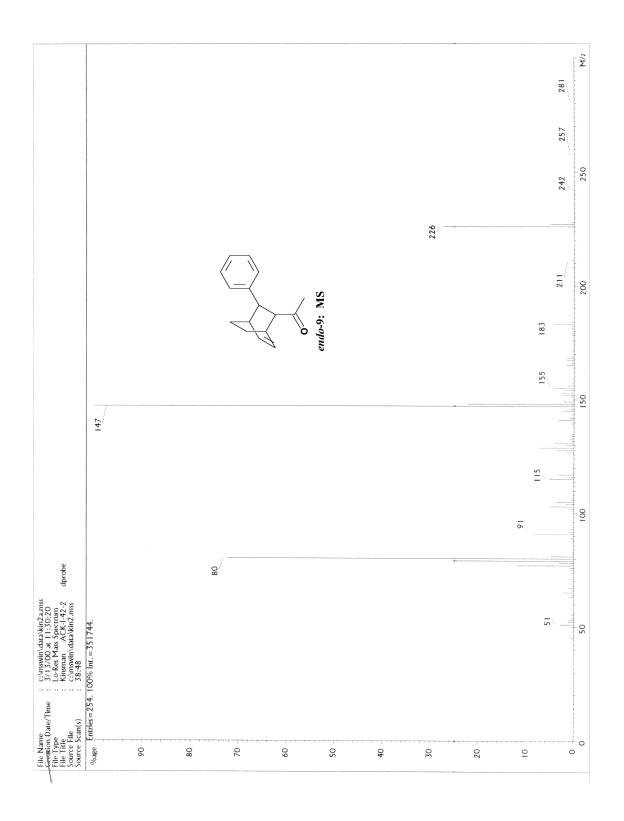

Table 5. If and Chinic Data for endo-11a in CDC13.				
Position	δC	$\delta H (m, J \text{ in Hz})$	$HMBC (H \rightarrow C)^a$	
1	34.50	2.96 m	3, 8	
2	50.91	3.79 d 6.4	1, 6, 7, 9, 11	
3	44.62	3.47 d 6.4	2, 4, 5, 8, 9, 11, 12	
4	36.42	2.66 m	2	
5	136.26	6.55 app t, 7.7, 6.8	1, 4	
6	130.63	6.10 app t, 8.1, 6.8	1, 4	
7	18.47	1.78-1.92 m	$4, 5, 6^b$	
		1.08-1.14 m	-	
8	26.41	1.78-1.92 m	$4, 5, 6^b$	
		1.43-1.50 m	-	
9	142.81	-	-	
10	~128 ^d	7.26-7.38 m	NA^e	
11	$\sim 128^d$	7.26-7.38 m	NA^e	
12	126.14	7.17-7.21 m	NA^e	
13	200.74	-	-	
14	136.34	-	-	
15	$\sim 128^{d}$	7.85 app d 7.7 ^c	NA^e	
16	$\sim 128^d$	7.26-7.38 m	NA^e	
17	132.69	7.49	NA^e	
ga 1 .: c 2 r	1 3 7	1. CON har har	. 1 1 . 6 . 6 . 7 . 1	

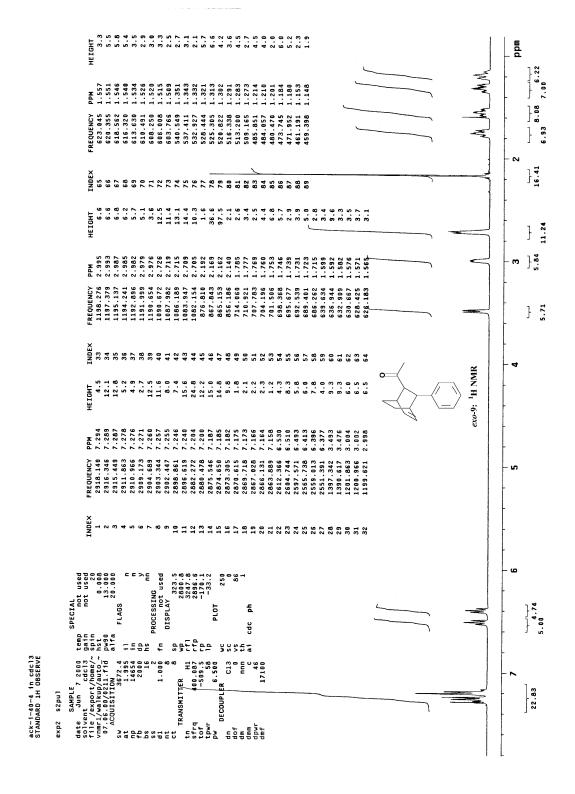
^aCorrelations for ${}^2J_{\text{C-H}}$ and ${}^3J_{\text{C-H}}$ couplings of 8 Hz. ^bSince chemical shifts of 7 and 8 are identical the correlations cannot be differentiated. ^c2H. ^dExact assignment was precluded by chemical shift similarities. ^eAssignment of correlations was precluded by the complexity of the spectrum.

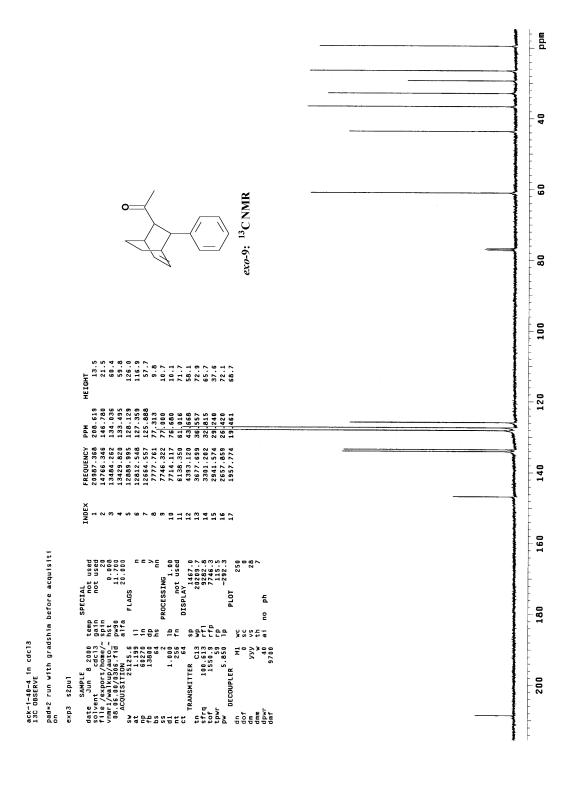

Appendix I: Spectroscopic Data

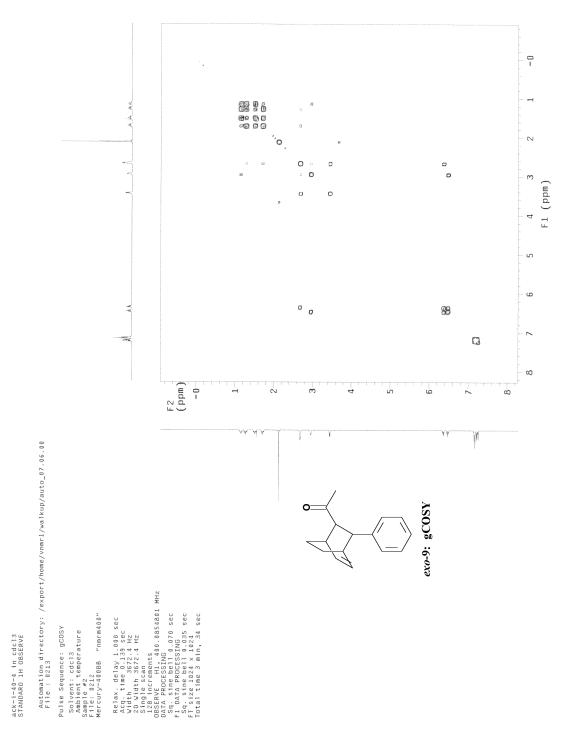


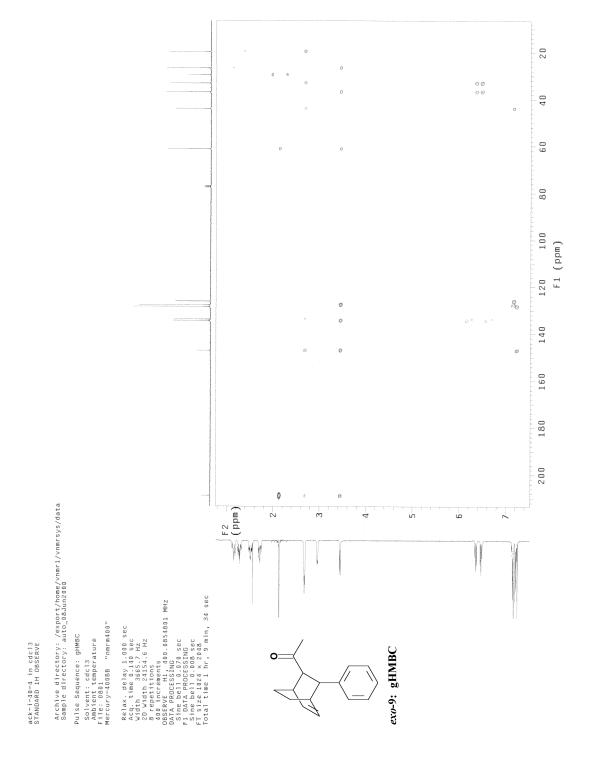


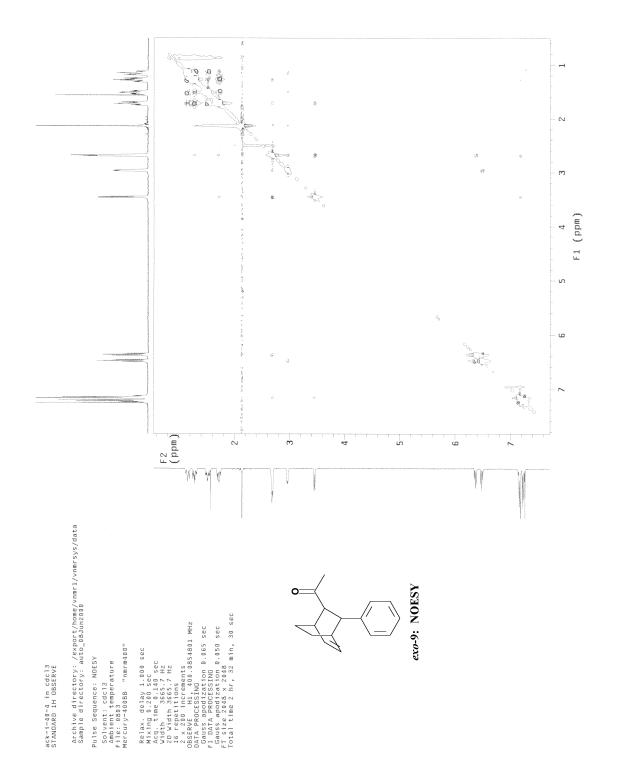


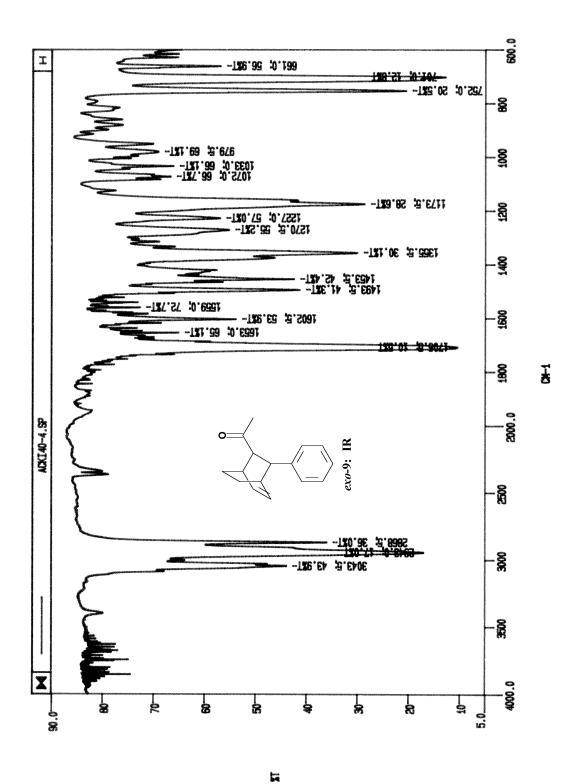


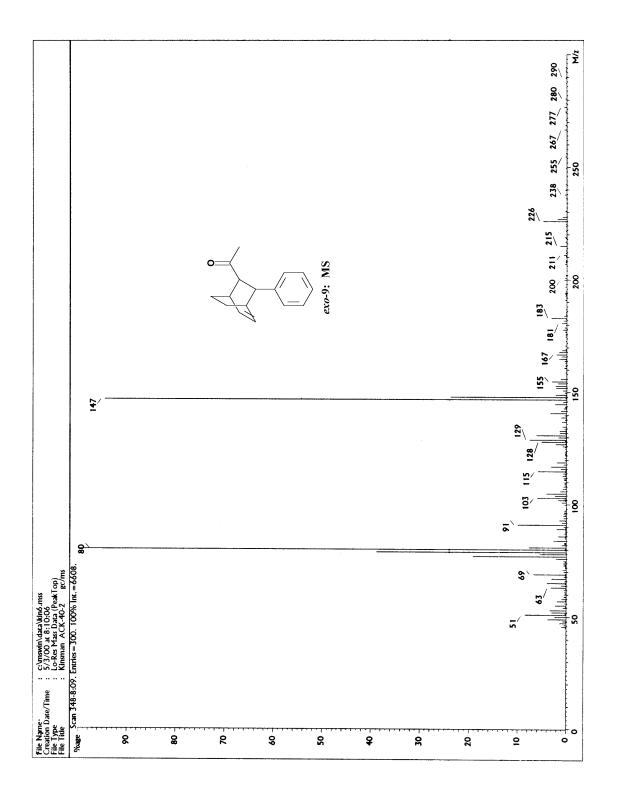


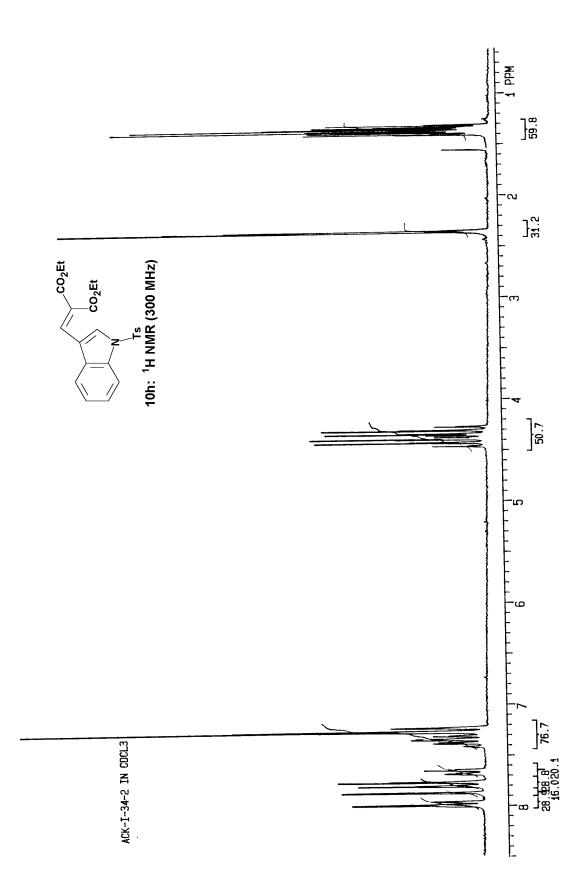


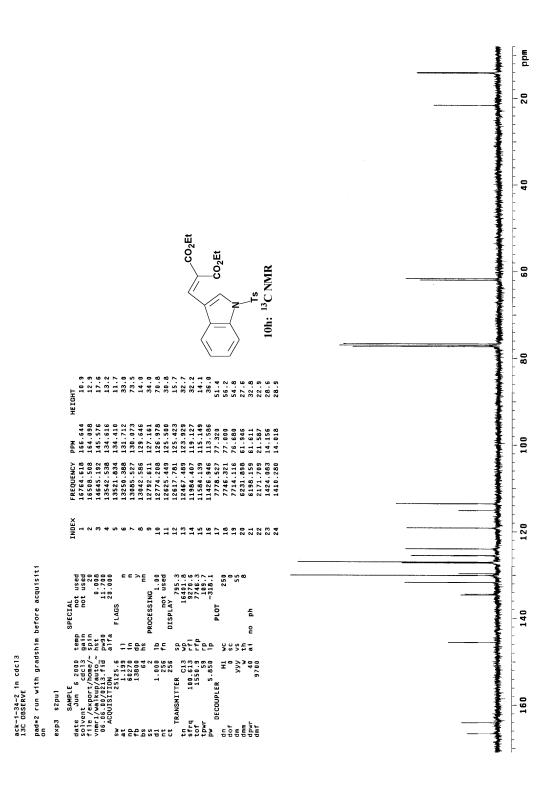


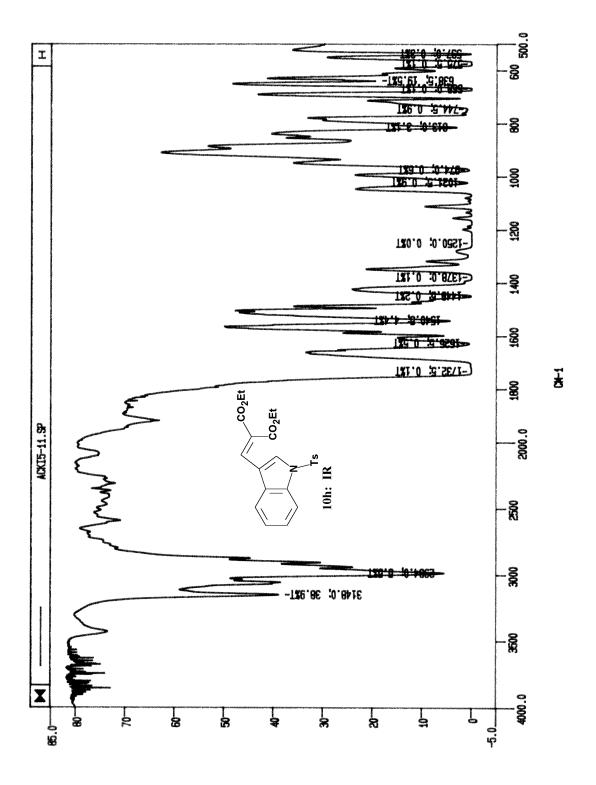


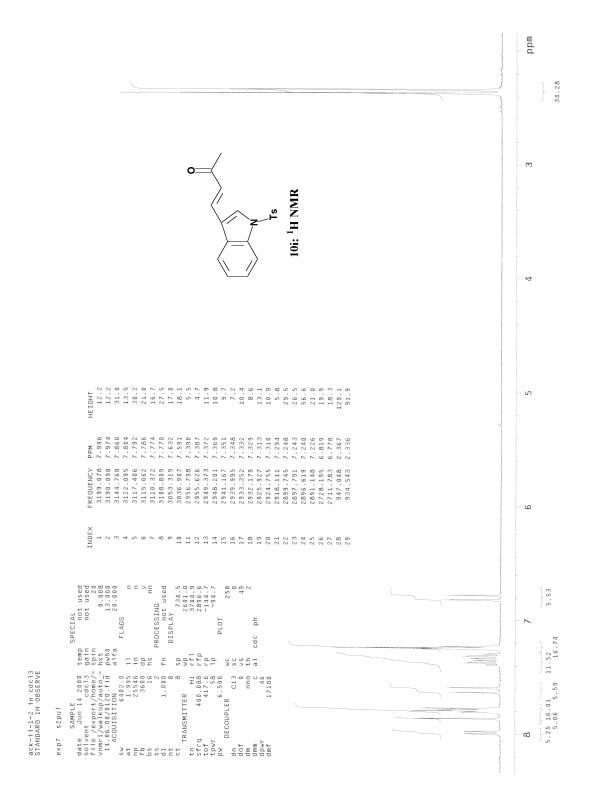


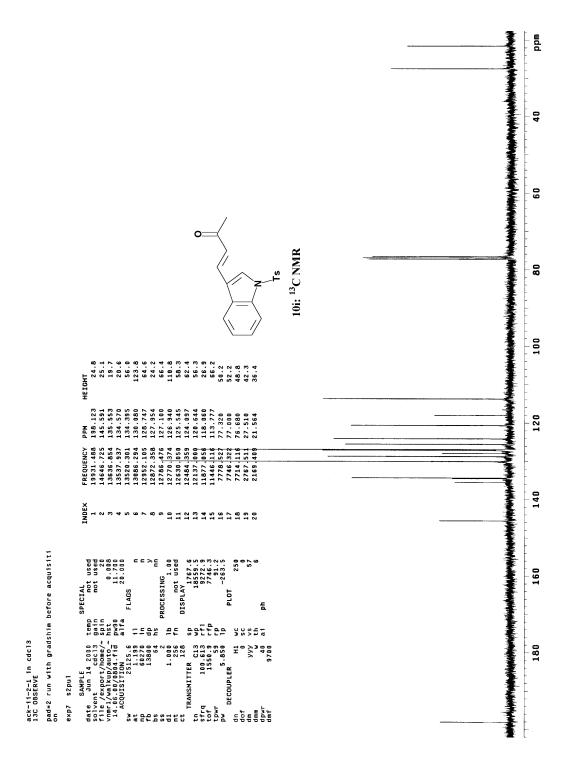


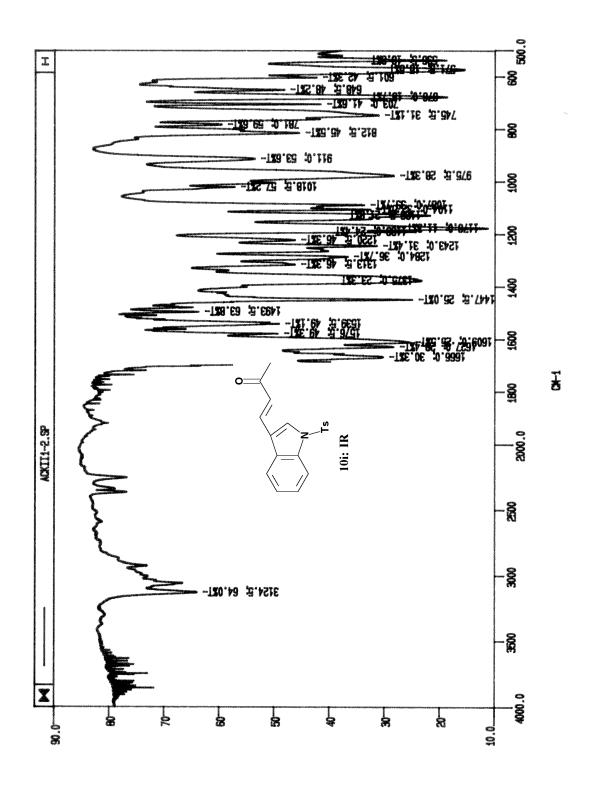




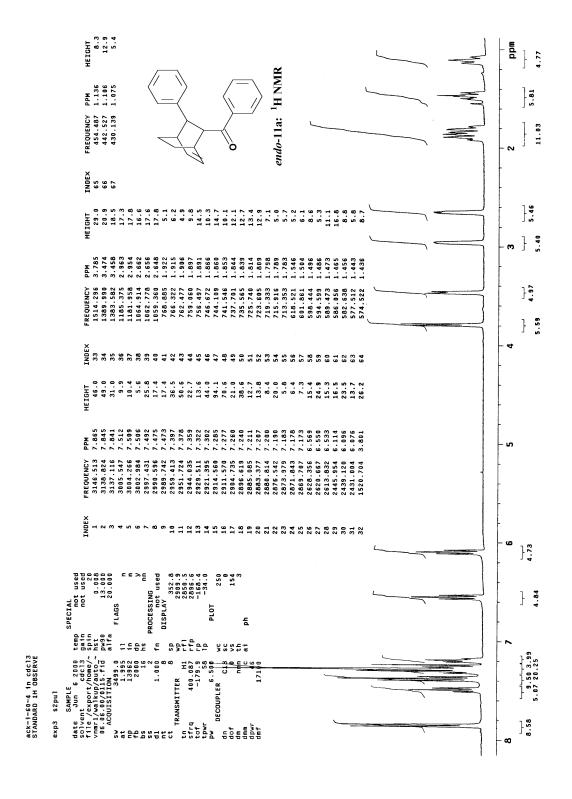


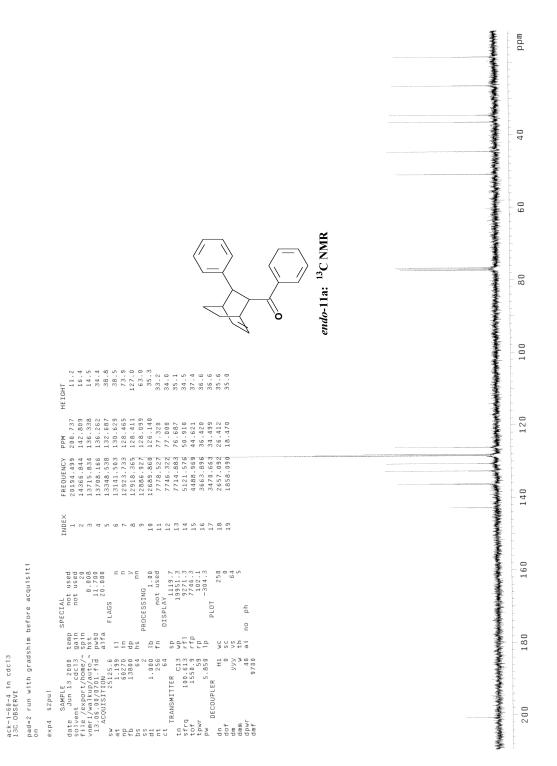


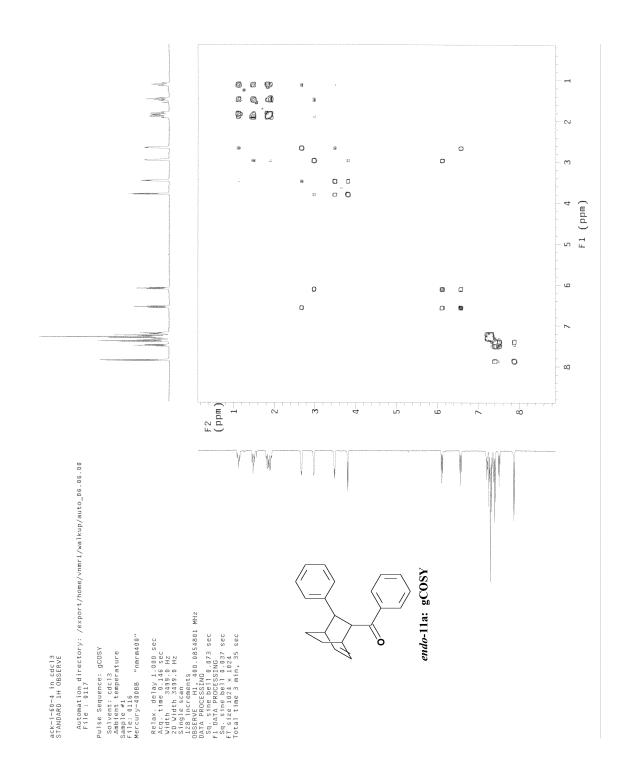


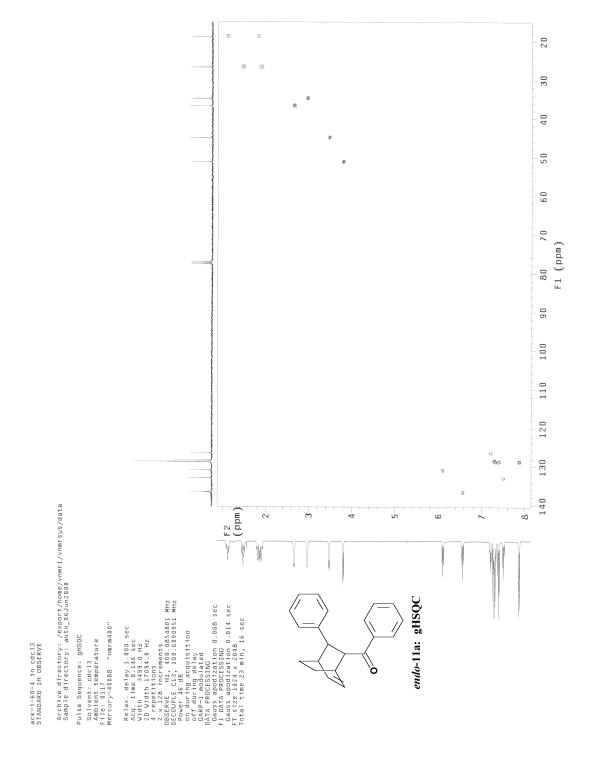


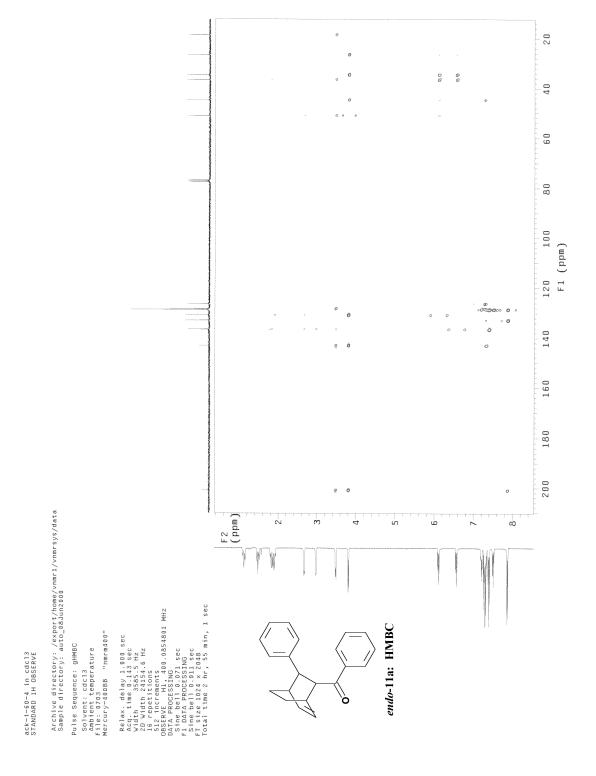
Ħ

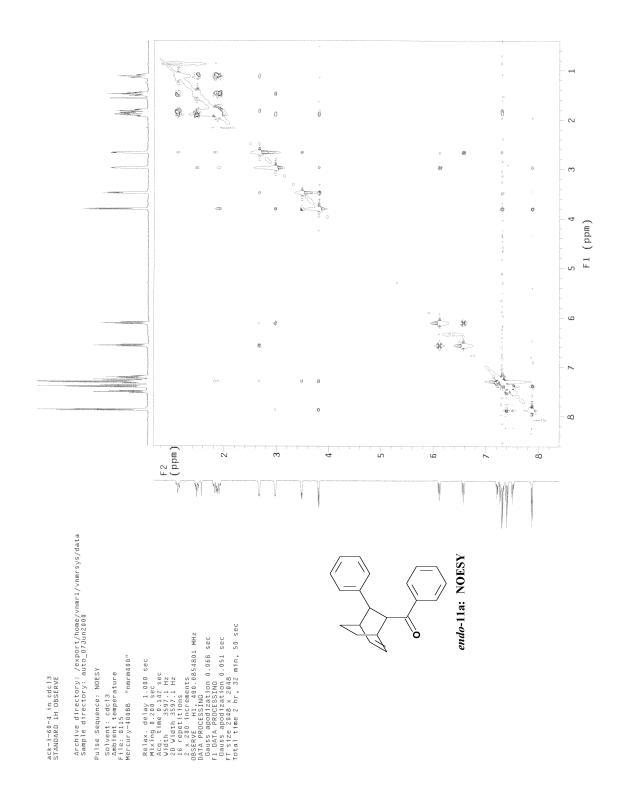


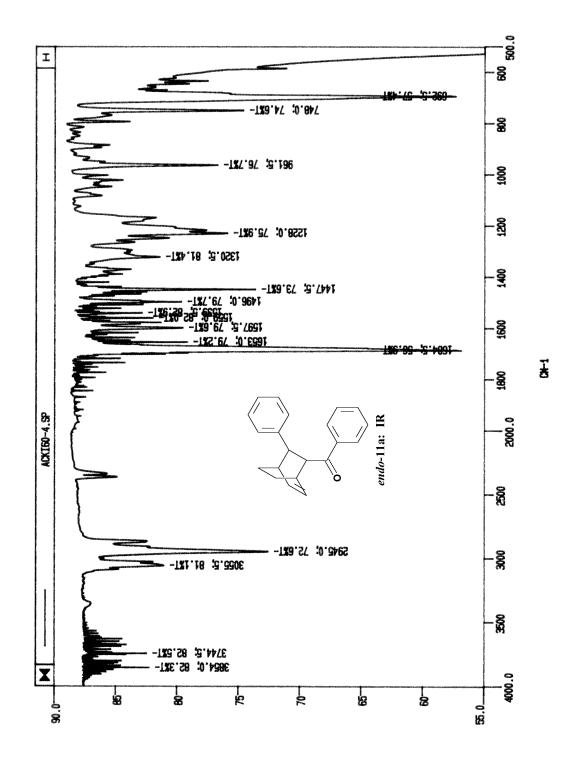


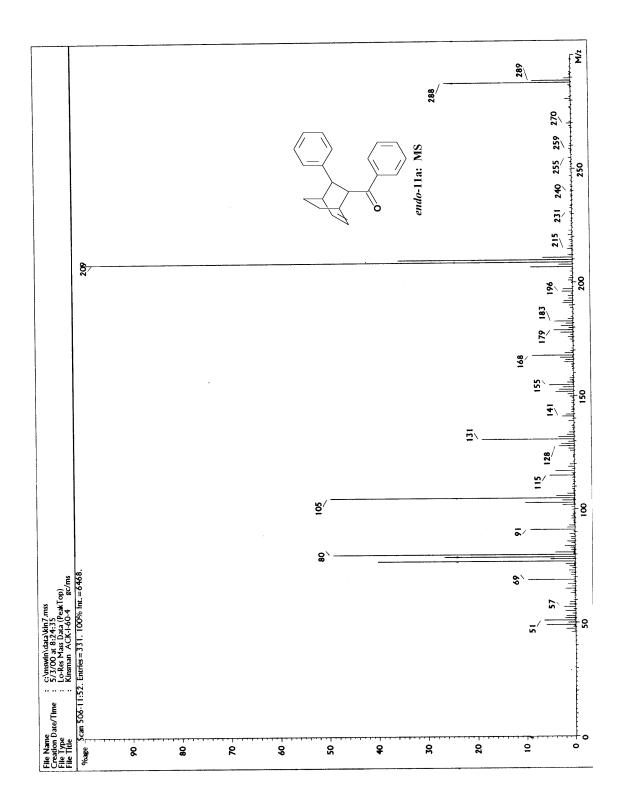


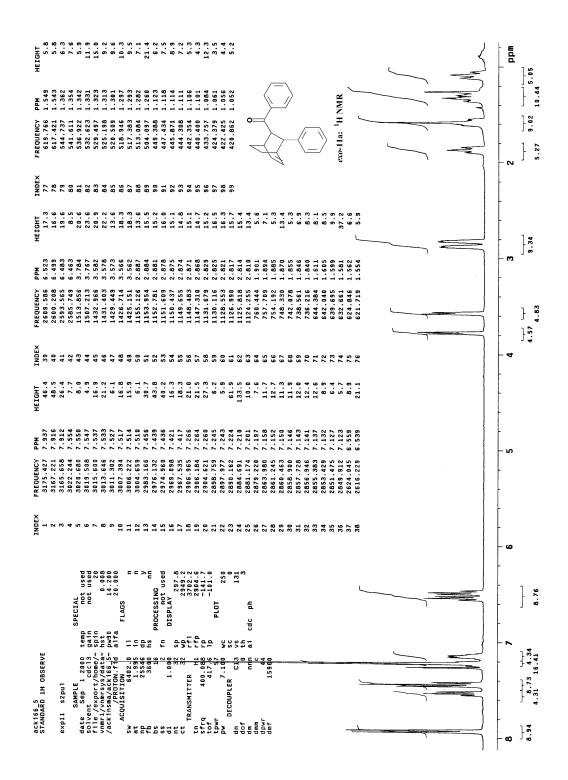


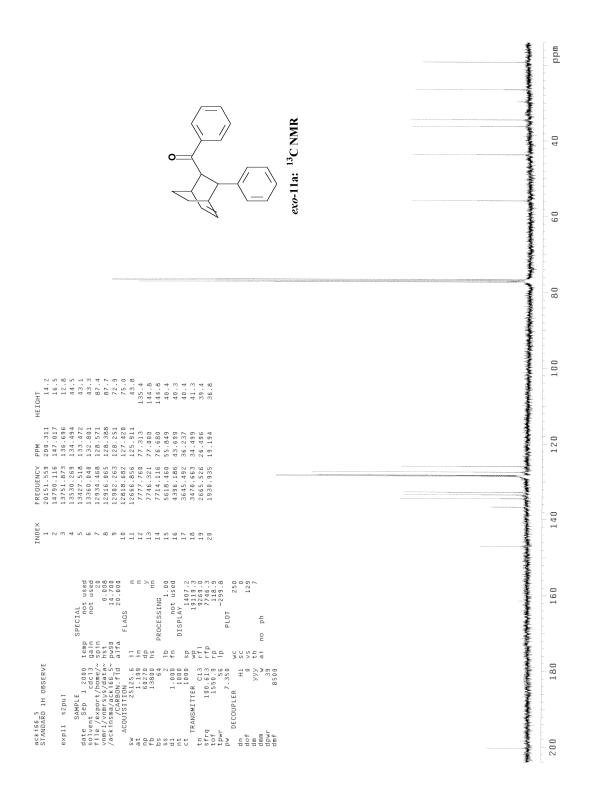


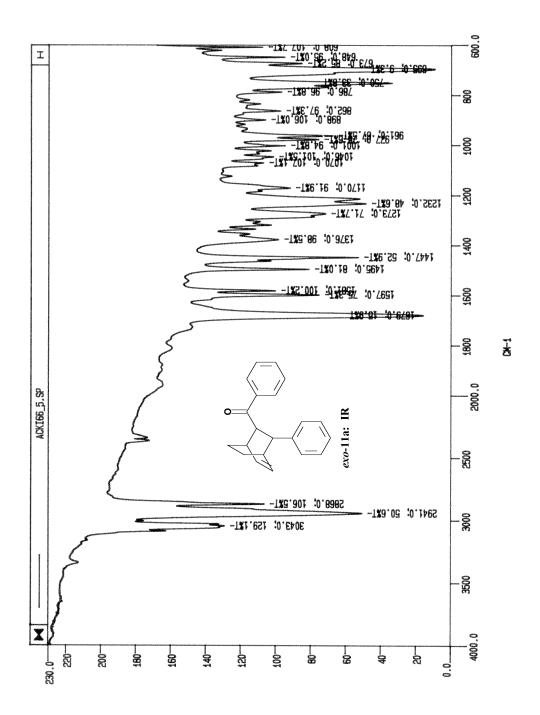




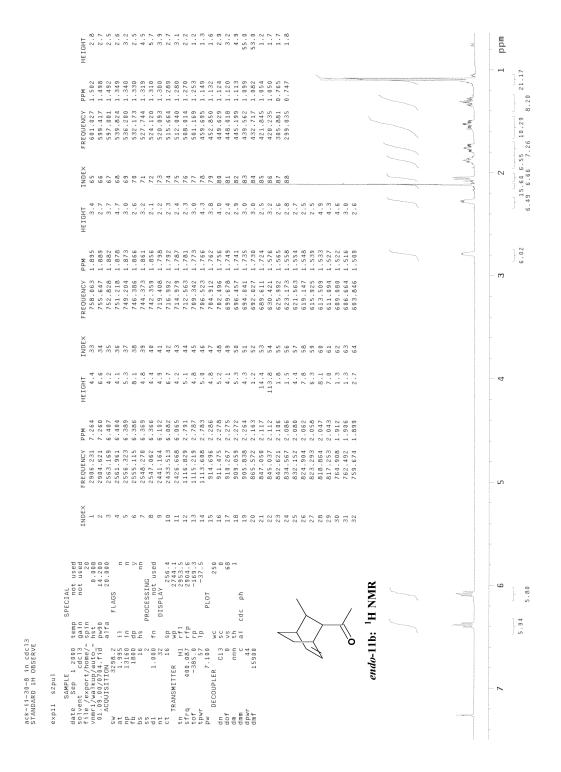


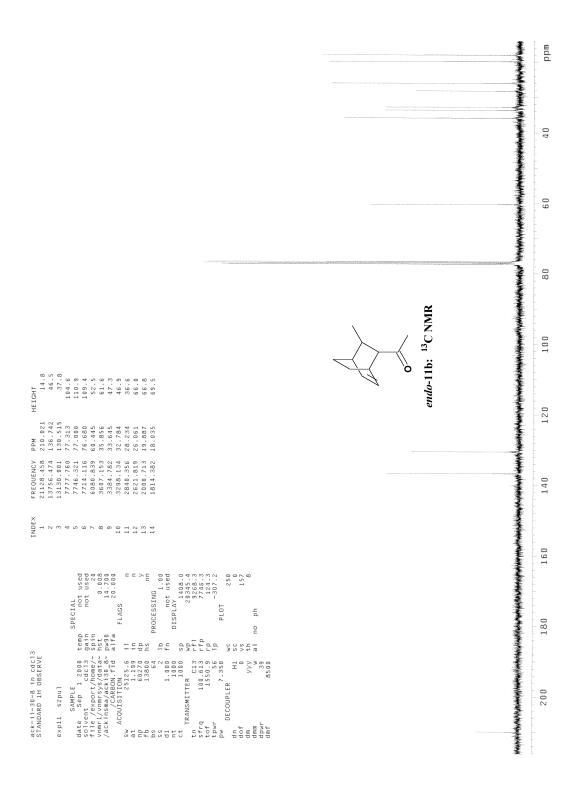


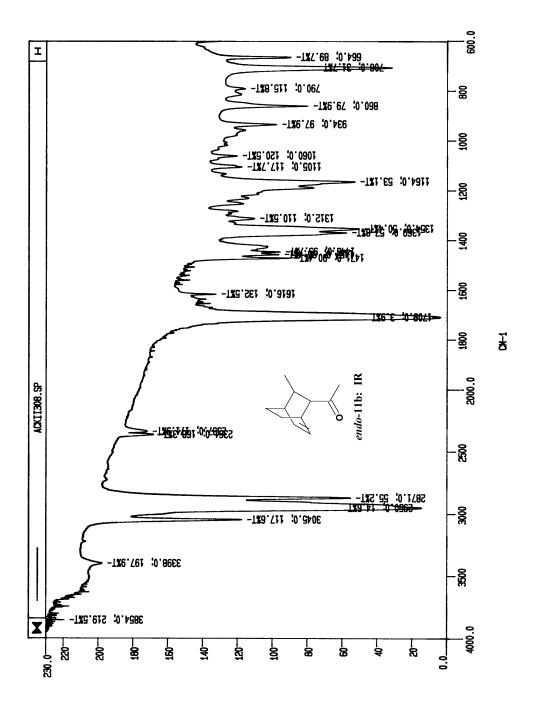


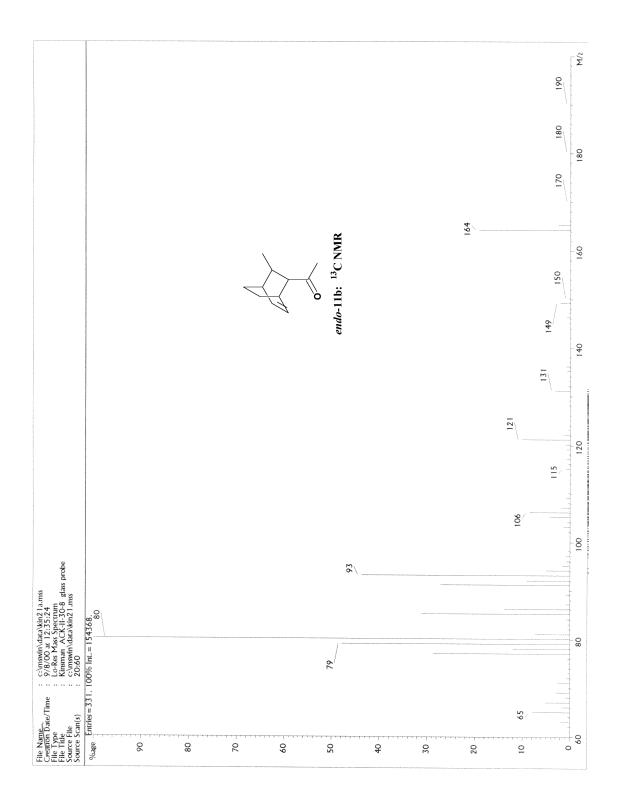


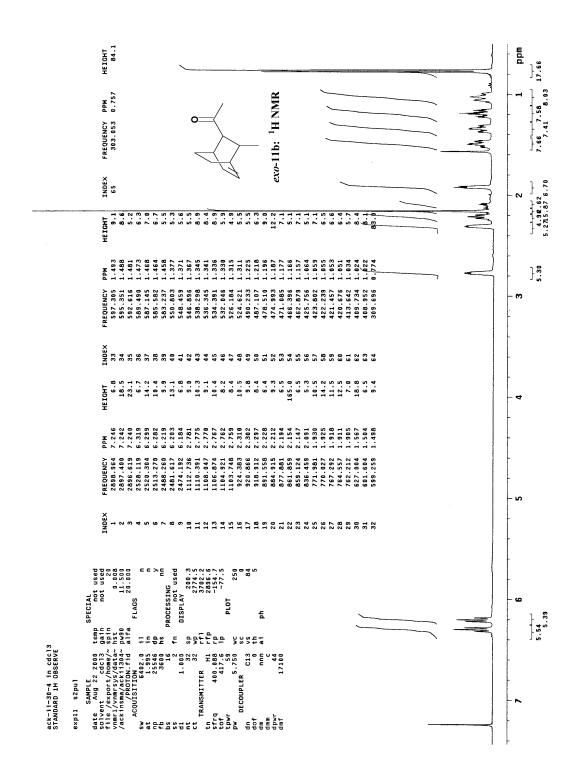


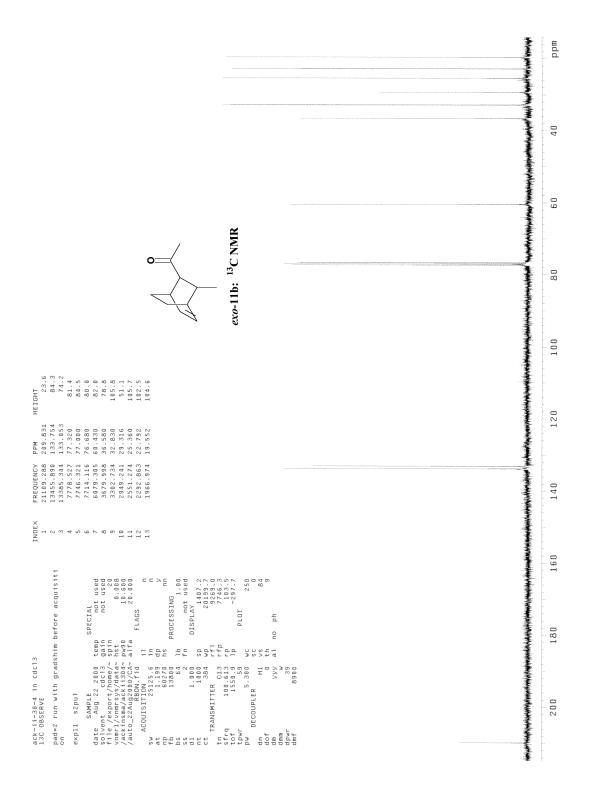


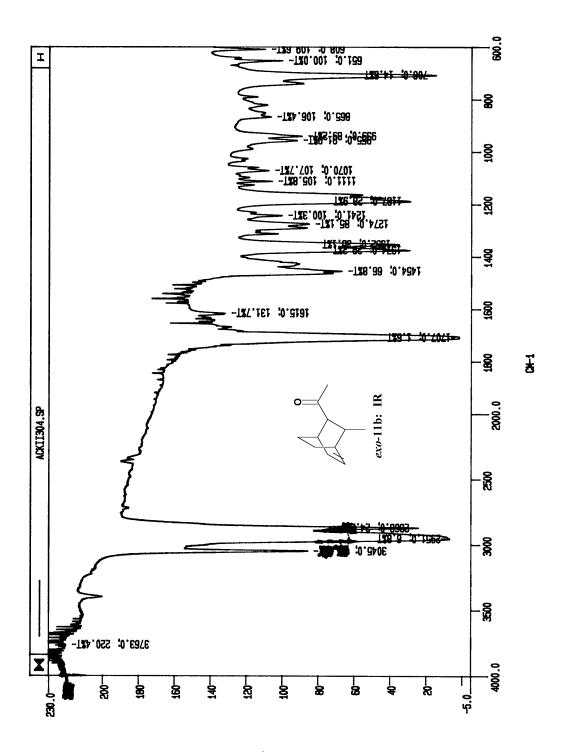


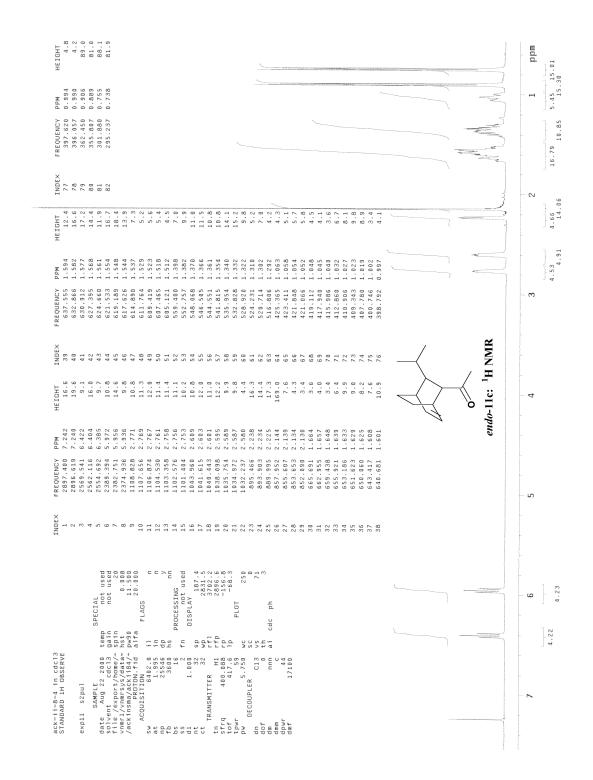


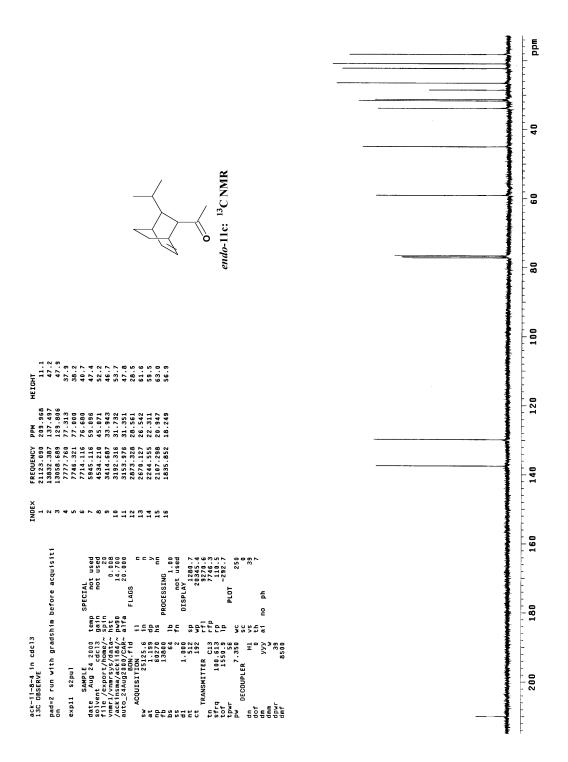


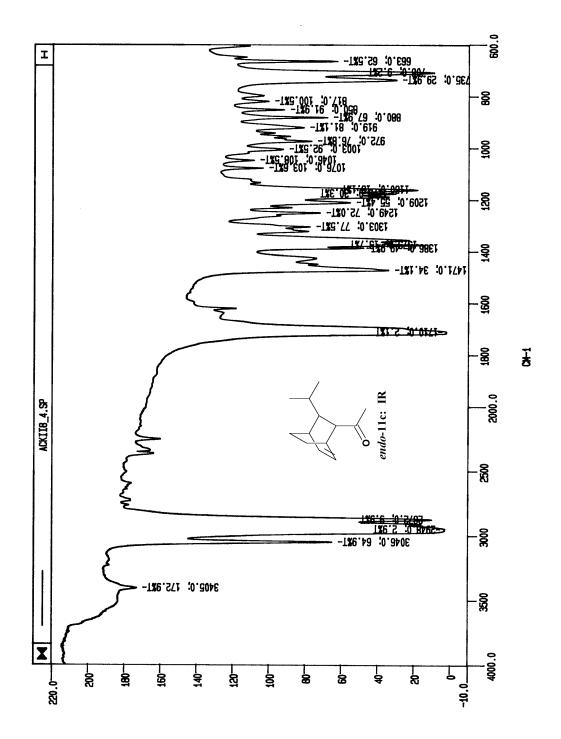


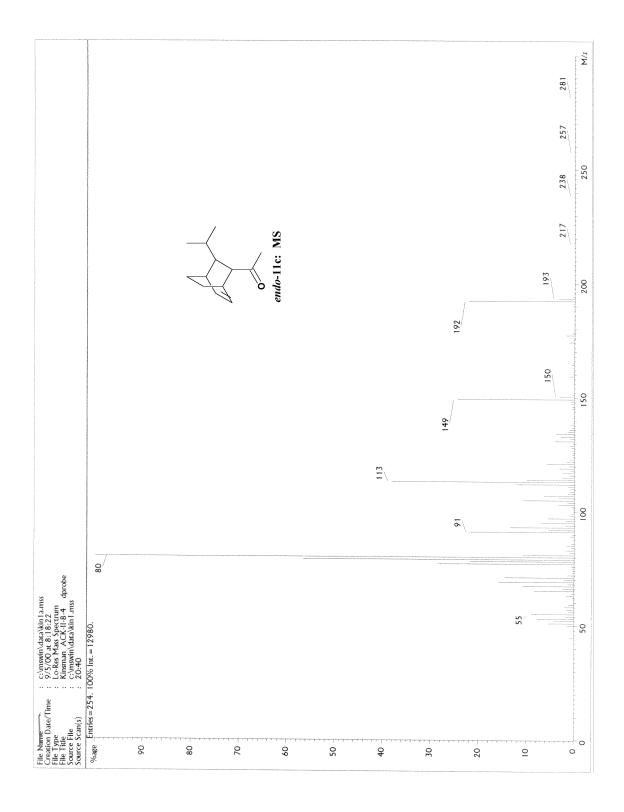


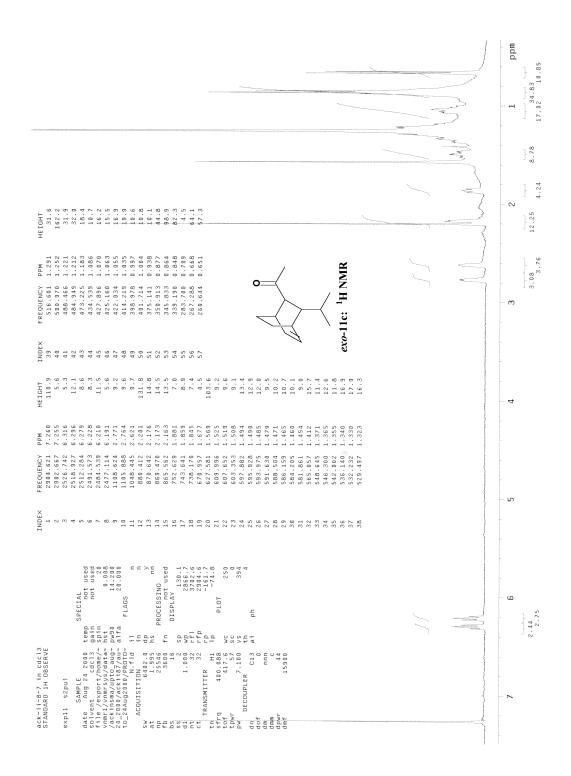


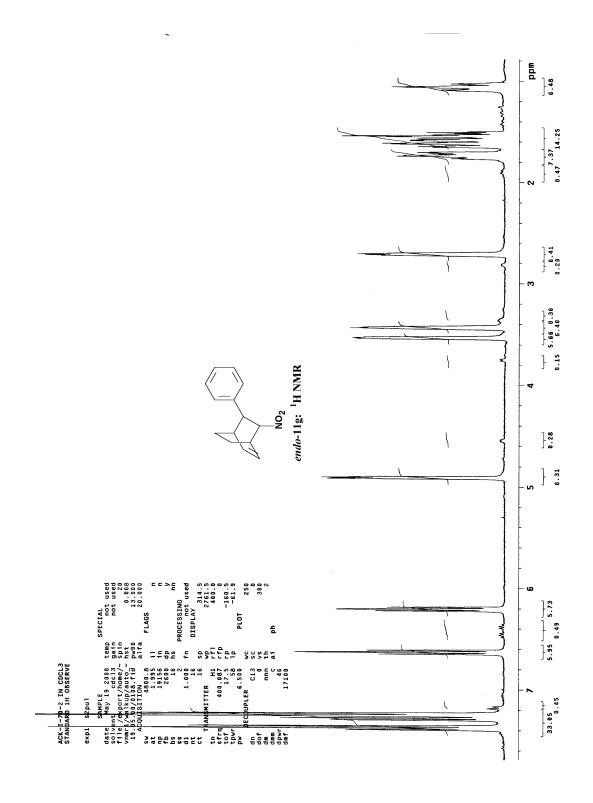


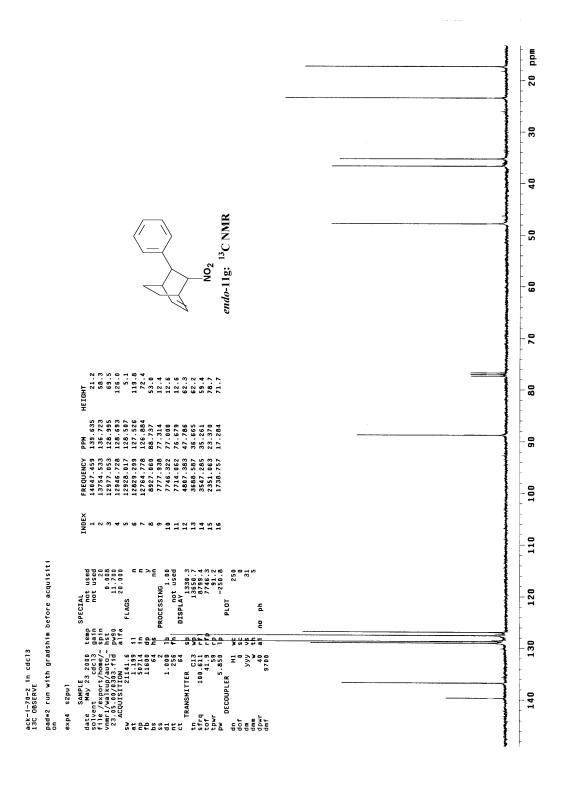


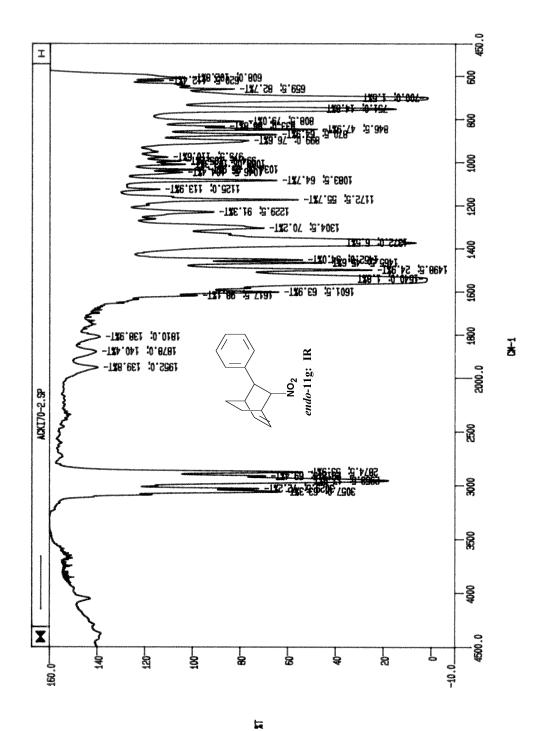


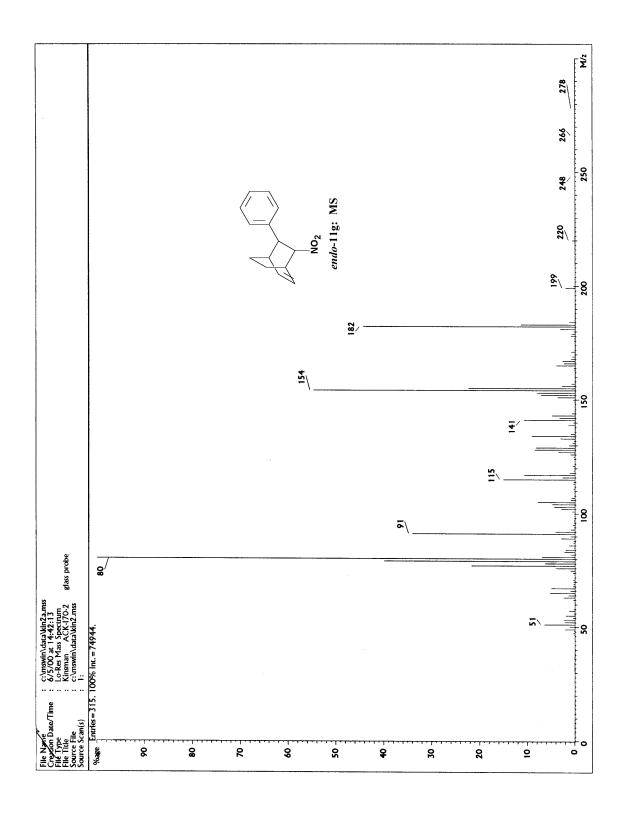


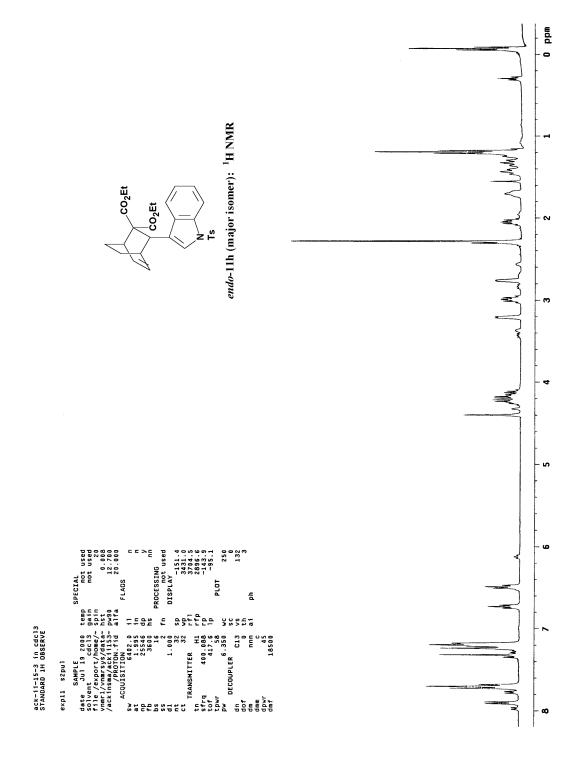


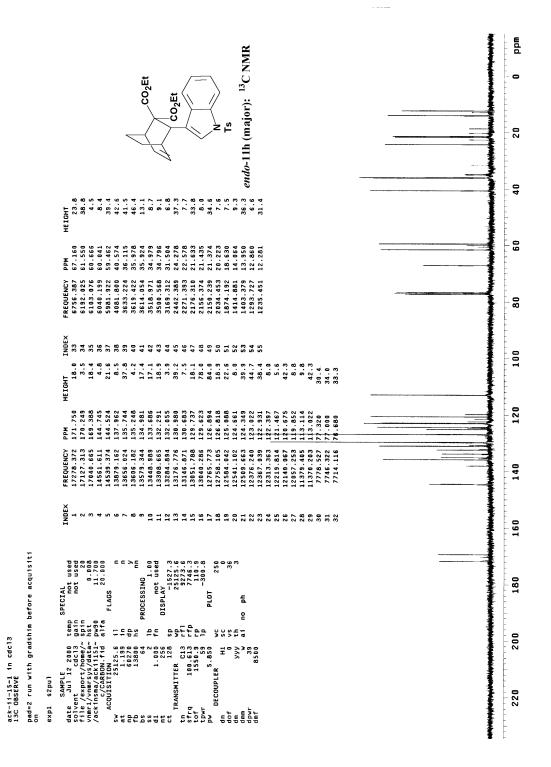


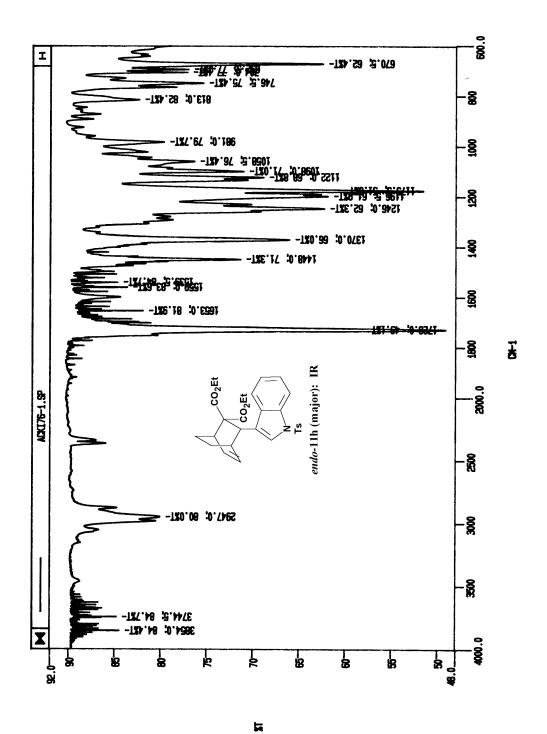


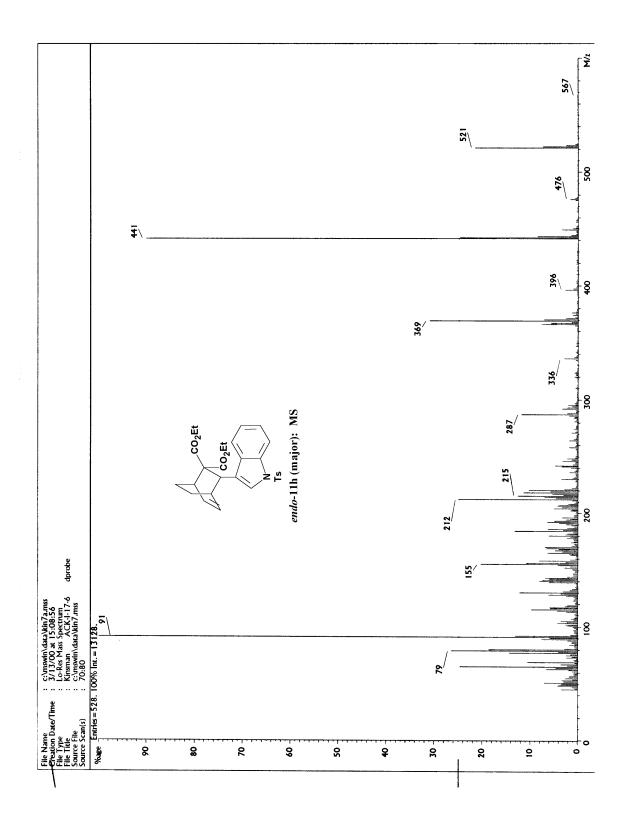


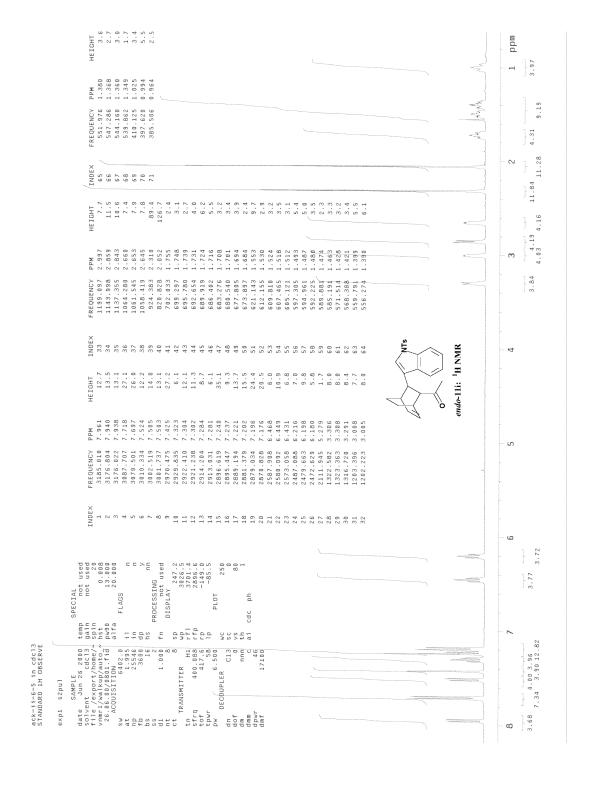


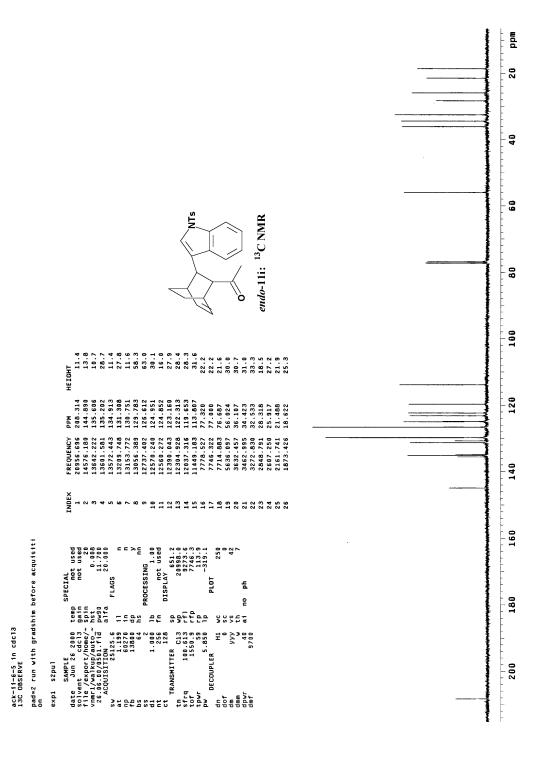

												0:		< <	\ \ \!\				/	11 _c . 13 _C NIMD	exo-11c: C NMK										THE PROPERTY OF THE PROPERTY O	60 40
																	200000							300								80
HEIGHT 5.9	15.3	16.4	293.0	280.0	20.0	17.3	19.8	18.2	31.0	1 12	12.4	22.9	7.4	23.6	9.61	7.4																100
PPM HE 209.899	133.838	77.206	77.000	76.687	57.846	33.219	33.127	32.182	24.690	29.362	29.087	25.322	22.685	20.856	20.177	14.125																120
FREQUENCY 21116.189	13464.324	7767.025	7746.321	7714.883	5819.361	3341.841	3332.639	3237.557	2986.814	2953.842	2926.237	2547.439	2282.128	2098.097	2029.852	1421.015																140
INDEX 1	or m	4 10	9	7	×00 c	10	11	12	1.0	12	16	17	18	55 0	2.1	22															1	0
	s before acquisiti		SPECIAL			0.008	î	rtAus	c :	'nu	PROCESSING	not used	DISPLAY	20345.4		93.8	-271.4		330		no ph									-		180 160
ack-ii-8-7 in cdcl3 13C OBSERVE	pad=2 run with gradshim before acquisiti on	expl1 s2pul	SAMPLE	a Aug 23 2000 temp	rent cucis gain e /export/home/~ spin	vnmr1/vnmrsys/data~ hst	CARBON. fid alf	25125.6 11	1.199 in	13800 hs		1.000 fn	2000			1550.9	7 350	ECOUPLER	H1 SC	å KKK	30 W B1										THE PERSON NAMED IN COLUMN	200 1
ack-	pad≕	exp1		date	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Vnmr /ack		A MS	at t	- L	ps	or or	nt		111	tof	tpwr	2	e de) E	dam	daf									A STATE OF	

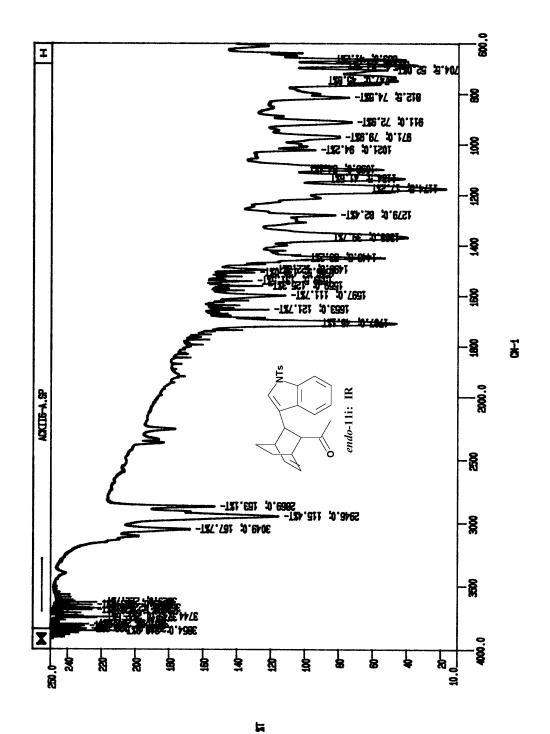


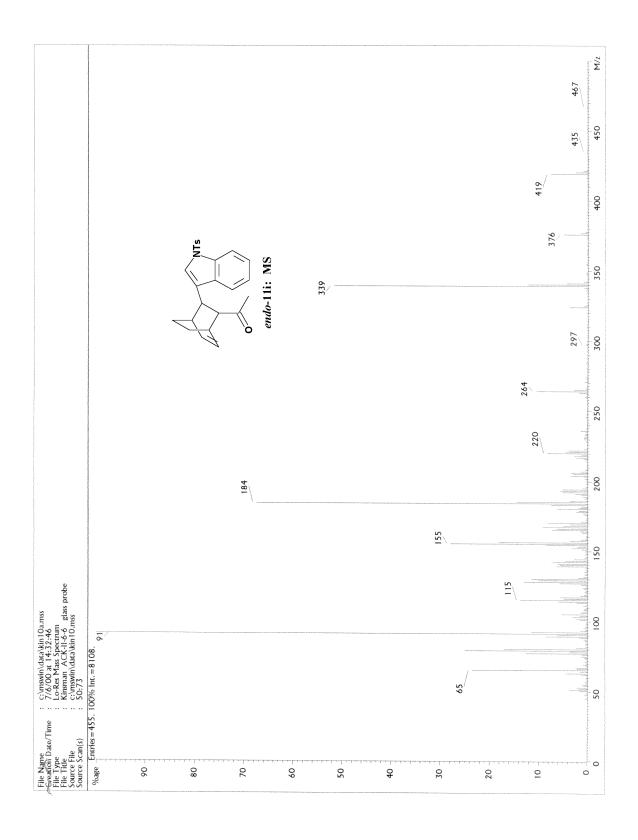


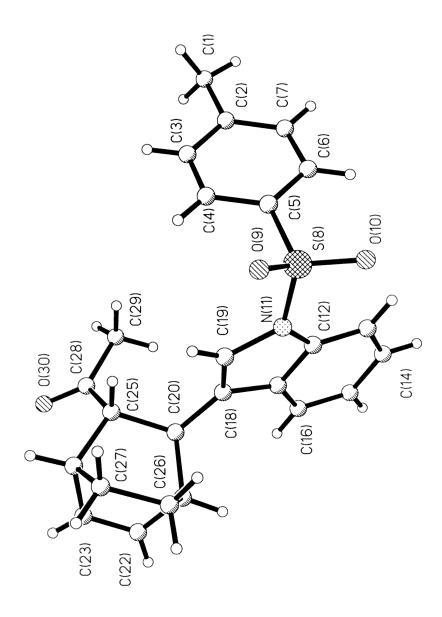












Appendix II: X-Ray Crystallographic Structures and Data for endo-11i.

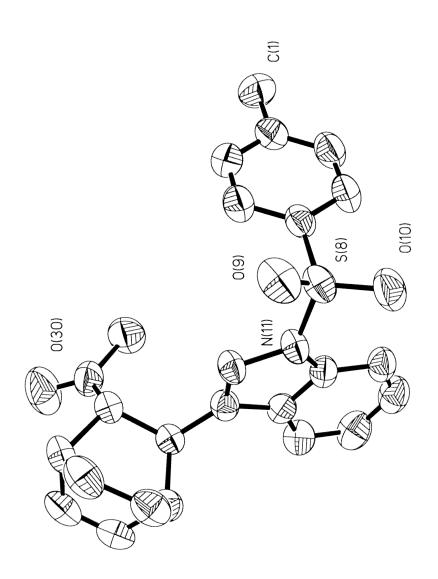


Table 1. Crystal data and structure refinement for 00094.

Identification code 00094

Empirical formula C25 H25 N O3 S

Formula weight 419.52

Temperature 298(2) K

Wavelength 0.71073 Å

Crystal system Monoclinic

Space group P2(1)

Unit cell dimensions a = 9.9766(4) Å $\alpha = 90^{\circ}$.

b = 20.0939(5) Å $\beta = 106.255(2)^{\circ}.$

 $c = 11.1572(5) \, \mathring{A}$ $\gamma = 90^{\circ}$.

Volume 2147.26(14) Å³

Z 4

Density (calculated) 1.298 Mg/m³
Absorption coefficient 0.177 mm³
F(000) 888

Crystal size 0.23 x 0.17 x 0.06 mm³

Theta range for data collection 2.63 to 27.48°.

Index ranges -12 < =h < =12, -22 < =k < =26, -14 < =l < =14

Reflections collected 16634

Independent reflections 9201 [R(int) = 0.0620]

Completeness to theta = 27.48° 98.7 %

Absorption correction Integration

Max. and min. transmission 0.9889 and 0.9603

Refinement method Full-matrix least-squares on F

Data / restraints / parameters 9201 / 1 / 542

Goodness-of-fit on F² 1.014

Final R indices [I>2sigma(I)] RI = 0.0540, wR2 = 0.1134R indices (all data) RI = 0.0972, wR2 = 0.1299

Absolute structure parameter 0.00(7)

Largest diff. peak and hole 0.223 and -0.257 e.Å³

Table 2. Atomic coordinates (x 10) and equivalent isotropic displacement parameters (\mathring{A} 'x 10) for 00094. U(eq) is defined as one third of the trace of the orthogonalized U^{i} tensor.

	x	y	z	U(eq)
C(1)	12288(4)	3625(2)	9379(4)	81(1)
C(2)	11089(4)	3226(2)	8607(3)	63(1)
C(3)	10777(4)	3211(2)	7306(4)	69(1)
C(4)	9688(4)	2850(2)	6574(3)	65(1)
C(5)	8870(3)	2480(2)	7153(3)	51(1)
C(6)	9148(4)	2485(2)	8441(3)	62(1)
C(7)	10231(4)	2861(2)	9137(3)	66(1)
S(8)	7518(1)	1986(1)	6239(1)	57(1)
O(9)	6838(3)	2336(1)	5120(2)	73(1)
O(10)	6725(2)	1722(1)	7002(2)	71(1)
N(11)	8307(3)	1350(1)	5786(2)	49(1)
C(12)	8936(3)	806(2)	6518(3)	47(1)
C(13)	8801(3)	575(2)	7650(3)	57(1)
C(14)	9511(4)	13(2)	8120(3)	68(1)
C(15)	10320(4)	-329(2)	7505(4)	71(1)
C(16)	10471(4)	-94(2)	6386(3)	60(1)
C(17)	9772(3)	485(2)	5882(3)	46(1)
C(18)	9711(3)	864(2)	4762(3)	46(1)
C(19)	8856(3)	1380(2)	4742(3)	49(1)
C(20)	10465(3)	671(1)	3814(3)	47(1)
C(21)	9624(4)	174(2)	2823(3)	56(1)
C(22)	10538(4)	-34(2)	2037(3)	60(1)
C(23)	10998(4)	452(2)	1483(3)	65(1)
C(24)	10473(4)	1126(2)	1701(3)	60(1)
C(25)	10895(3)	1272(2)	3115(3)	53(1)
C(26)	8348(4)	532(2)	1967(3)	65(1)
C(27)	8851(4)	1090(2)	1271(3)	70(1)
C(28)	12425(4)	1422(2)	3641(4)	67(1)
C(29)	12937(4)	1598(2)	4989(4)	87(1)
O(30)	13216(3)	1416(2)	2993(3)	108(1)

C(31)	17707(4)	-3550(2)	1665(4)	81(1)
C(32)	16488(3)	-3164(2)	878(3)	60(1)
C(33)	16160(4)	-3188(2)	-415(4)	65(1)
C(34)	15019(4)	-2853(2)	-1142(3)	60(1)
C(35)	14173(3)	-2480(2)	-592(3)	51(1)
C(36)	14492(4)	-2453(2)	696(3)	58(1)
C(37)	15636(4)	-2799(2)	1419(3)	65(1)
S(38)	12750(1)	-2047(1)	-1524(1)	54(1)
O(39)	12114(3)	-2428(1)	-2618(2)	71(1)
O(40)	11941(2)	-1796(1)	-759(2)	67(1)
N(41)	13430(3)	-1392(1)	-2044(2)	50(1)
C(42)	14006(3)	-824(2)	-1352(3)	48(1)
C(43)	13813(4)	-561(2)	-259(3)	61(1)
C(44)	14485(4)	24(2)	174(4)	70(1)
C(45)	15293(4)	344(2)	-454(4)	69(1)
C(46)	15499(3)	91(2)	-1537(3)	59(1)
C(47)	14864(3)	-515(1)	-1996(3)	48(1)
C(48)	14873(3)	-922(2)	-3049(3)	49(1)
C(49)	14011(3)	-1448(2)	-3050(3)	51(1)
C(50)	15701(3)	-761(2)	-3944(3)	52(I)
C(51)	14973(4)	-217(2)	-4917(4)	67(1)
C(52)	15974(4)	-37(2)	-5646(4)	75(I)
C(53)	16306(4)	-550(2)	-6252(4)	71(1)
C(54)	15650(4)	-1187(2)	-6092(3)	66(1)
C(55)	16028(4)	-1360(2)	-4689(3)	55(1)
C(56)	13687(4)	-529(2)	-5788(4)	80(1)
C(57)	14090(4)	-1084(2)	-6542(4)	80(1)
C(58)	17513(4)	-1600(2)	-4159(4)	70(1)
C(59)	17976(5)	-1794(2)	-2818(4)	83(1)
O(60)	18280(3)	-1665(2)	-4806(3)	121(1)

Table 3. Bond lengths [Å] and angles [°] for 00094.

	
C(1)-C(2)	1.497(5)
C(2)-C(7)	1.379(5)
C(2)-C(3)	1.398(5)
C(3)-C(4)	1.370(5)
C(4)-C(5)	1.389(5)
C(5)-C(6)	1.386(4)
C(5)-S(8)	1.753(3)
C(6)-C(7)	1.368(5)
S(8)-O(10)	1.418(2)
S(8)-O(9)	1.427(3)
S(8)-N(11)	1.653(3)
N(11)-C(12)	1.404(4)
N(11)-C(19)	1.420(4)
C(12)-C(13)	1.388(4)
C(12)-C(17)	1.396(4)
C(13)-C(14)	1.358(5)
C(14)-C(15)	1.380(5)
C(15)-C(16)	1.381(5)
C(16)-C(17)	1.391(5)
C(17)-C(18)	1.451(4)
C(18)-C(19)	1.338(4)
C(18)-C(20)	1.510(4)
C(20)-C(21)	1.551(4)
C(20)-C(25)	1.561(4)
C(21)-C(22)	1.492(5)
C(21)-C(26)	1.538(5)
C(22)-C(23)	1.306(5)
C(23)-C(24)	1.497(5)
C(24)-C(25)	1.544(4)
C(24)-C(27)	1.555(5)
C(25)-C(28)	1.504(5)
C(26)-C(27)	1.527(5)
C(28)-O(30)	1.210(4)
C(28)-C(29)	1.490(5)

C(31)-C(32)	1.501(5)
C(32)-C(37)	1.382(5)
C(32)-C(33)	1.388(5)
C(33)-C(34)	1.375(5)
C(34)-C(35)	1.393(4)
C(35)-C(36)	1.383(4)
C(35)-S(38)	1.740(3)
C(36)-C(37)	1.386(5)
S(38)-O(40)	1.422(2)
S(38)-O(39)	1.431(2)
S(38)-N(41)	1.659(2)
N(41)-C(49)	1.404(4)
N(41)-C(42)	1.406(4)
C(42)-C(43)	1.392(4)
C(42)-C(47)	1.407(4)
C(43)-C(44)	1.371(5)
C(44)-C(45)	1.367(5)
C(45)-C(46)	1.378(5)
C(46)-C(47)	1.401(4)
C(47)-C(48)	1.434(4)
C(48)-C(49)	1.363(4)
C(48)-C(50)	1.499(4)
C(50)-C(55)	1.549(4)
C(50)-C(51)	1.568(5)
C(51)-C(52)	1.498(5)
C(51)-C(56)	1.512(5)
C(52)-C(53)	1.326(5)
C(53)-C(54)	1.470(5)
C(54)-C(57)	1.510(5)
C(54)-C(55)	1.545(5)
C(55)-C(58)	1.511(5)
C(56)-C(57)	1.518(6)
C(58)-O(60)	1.197(4)
C(58)-C(59)	1.489(5)
C(7)-C(2)-C(3)	116.7(3)

C(7)- $C(2)$ - $C(1)$	122.0(3)
C(3)-C(2)-C(1)	121.3(3)
C(4)-C(3)-C(2)	122.7(3)
C(3)-C(4)-C(5)	118.5(3)
C(6)-C(5)-C(4)	120.3(3)
C(6)- $C(5)$ - $S(8)$	120.4(3)
C(4)-C(5)-S(8)	119.3(3)
C(7)-C(6)-C(5)	119.3(3)
C(6)-C(7)-C(2)	122.5(3)
O(10)-S(8)-O(9)	120.09(16)
O(10)-S(8)-N(11)	106.71(14)
O(9)-S(8)-N(11)	105.26(14)
O(10)-S(8)-C(5)	109.28(16)
O(9)-S(8)-C(5)	109.31(17)
N(11)-S(8)-C(5)	105.09(14)
C(12)-N(11)-C(19)	107.3(2)
C(12)-N(11)-S(8)	126.7(2)
C(19)-N(11)-S(8)	123.0(2)
C(13)-C(12)-C(17)	122.1(3)
C(13)-C(12)-N(11)	130.5(3)
C(17)-C(12)-N(11)	107.4(3)
C(14)-C(13)-C(12)	117.1(3)
C(13)-C(14)-C(15)	122.5(3)
C(14)-C(15)-C(16)	120.4(4)
C(15)-C(16)-C(17)	118.8(3)
C(16)-C(17)-C(12)	119.0(3)
C(16)-C(17)-C(18)	133.1(3)
C(12)-C(17)-C(18)	107.9(3)
C(19)-C(18)-C(17)	107.1(3)
C(19)-C(18)-C(20)	128.9(3)
C(17)-C(18)-C(20)	124.0(3)
C(18)-C(19)-N(11)	110.2(3)
C(18)-C(20)-C(21)	112.9(3)
C(18)-C(20)-C(25)	114.3(2)
C(21)-C(20)-C(25)	108.2(3)
C(22)-C(21)-C(26)	107.6(3)

C(22)- $C(21)$ - $C(20)$	107.6(3)
C(26)-C(21)-C(20)	109.3(3)
C(23)-C(22)-C(21)	115.0(3)
C(22)-C(23)-C(24)	114.4(3)
C(23)-C(24)-C(25)	109.4(3)
C(23)-C(24)-C(27)	106.9(3)
C(25)-C(24)-C(27)	106.7(3)
C(28)-C(25)-C(24)	113.2(3)
C(28)-C(25)-C(20)	110.5(3)
C(24)-C(25)-C(20)	109.2(3)
C(27)-C(26)-C(21)	109.0(3)
C(26)-C(27)-C(24)	109.8(3)
O(30)-C(28)-C(29)	120.5(3)
O(30)-C(28)-C(25)	121.8(3)
C(29)-C(28)-C(25)	117.7(3)
C(37)-C(32)-C(33)	118.5(3)
C(37)-C(32)-C(31)	121.0(4)
C(33)-C(32)-C(31)	120.4(3)
C(34)-C(33)-C(32)	120.7(3)
C(33)- $C(34)$ - $C(35)$	120.5(3)
C(36)- $C(35)$ - $C(34)$	119.2(3)
C(36)-C(35)-S(38)	120.9(2)
C(34)-C(35)-S(38)	120.0(3)
C(35)-C(36)-C(37)	119.8(3)
C(32)-C(37)-C(36)	121.3(3)
O(40)-S(38)-O(39)	120.80(15)
O(40)-S(38)-N(41)	106.53(14)
O(39)-S(38)-N(41)	104.70(14)
O(40)- $S(38)$ - $C(35)$	108.94(15)
O(39)-S(38)-C(35)	109.55(16)
N(41)-S(38)-C(35)	105.13(14)
C(49)-N(41)-C(42)	107.9(2)
C(49)-N(41)-S(38)	121.1(2)
C(42)- $N(41)$ - $S(38)$	126.6(2)
C(43)-C(42)-N(41)	130.9(3)
C(43)-C(42)-C(47)	122.1(3)

N(41)-C(42)-C(47)	107.0(3)
C(44)-C(43)-C(42)	117.4(4)
C(45)-C(44)-C(43)	121.5(4)
C(44)-C(45)-C(46)	122.0(4)
C(45)-C(46)-C(47)	118.5(3)
C(46)-C(47)-C(42)	118.4(3)
C(46)-C(47)-C(48)	133.6(3)
C(42)-C(47)-C(48)	108.0(3)
C(49)-C(48)-C(47)	107.2(3)
C(49)-C(48)-C(50)	129.2(3)
C(47)-C(48)-C(50)	123.6(3)
C(48)-C(49)-N(41)	109.8(3)
C(48)-C(50)-C(55)	115.3(3)
C(48)-C(50)-C(51)	112.2(3)
C(55)-C(50)-C(51)	107.3(3)
C(52)-C(51)-C(56)	109.0(3)
C(52)-C(51)-C(50)	107.2(3)
C(56)-C(51)-C(50)	107.5(3)
C(53)-C(52)-C(51)	112.8(3)
C(52)-C(53)-C(54)	115.7(3)
C(53)-C(54)-C(57)	107.0(3)
C(53)-C(54)-C(55)	109.1(3)
C(57)-C(54)-C(55)	107.7(3)
C(58)-C(55)-C(54)	113.8(3)
C(58)-C(55)-C(50)	111.7(3)
C(54)-C(55)-C(50)	109.9(3)
C(51)-C(56)-C(57)	110.6(3)
C(54)-C(57)-C(56)	109.0(3)
O(60)-C(58)-C(59)	120.4(4)
O(60)-C(58)-C(55)	121.4(4)
C(59)-C(58)-C(55)	118.1(3)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å·x 10°) for 00094. The anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2} a^{*}U^{2} + ... + 2h k a^{*}b^{*}U^{2}]$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		U "	U^{2}	$U^{_{23}}$	U^{n}	U n	U^{a}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 C(1)	86(3)	69(2)	86(3)	-9(2)	23(2)	-17(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)	67(2)	61(2)	65(2)	-5(2)	28(2)	6(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)	80(3)	61(2)	75(3)	-3(2)	38(2)	-10(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	79(2)	69(2)	54(2)	3(2)	30(2)	1(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)	54(2)	55(2)	51(2)	0(1)	24(2)	7(1)
S(8) $53(1)$ $69(1)$ $52(1)$ $-1(1)$ $22(1)$ $9(1)$ $0(9)$ $70(2)$ $87(2)$ $61(2)$ $6(1)$ $15(1)$ $26(1)$ $0(10)$ $58(1)$ $96(2)$ $69(2)$ $-10(1)$ $36(1)$ $-9(1)$ $N(11)$ $54(2)$ $59(2)$ $38(1)$ $4(1)$ $19(1)$ $5(1)$ $C(12)$ $45(2)$ $55(2)$ $41(2)$ $4(1)$ $12(1)$ $-7(1)$ $C(13)$ $56(2)$ $72(2)$ $41(2)$ $3(2)$ $14(2)$ $11(2)$ $-15(2)$ $C(14)$ $71(2)$ $81(3)$ $48(2)$ $14(2)$ $11(2)$ $11(2)$ $-16(2)$ $C(15)$ $71(2)$ $69(2)$ $65(2)$ $59(2)$ $8(2)$	C(6)	64(2)	82(2)	49(2)	-1(2)	28(2)	-1(2)
O(9) $70(2)$ $87(2)$ $61(2)$ $61(2)$ $6(1)$ $15(1)$ $26(1)$ $O(10)$ $58(1)$ $96(2)$ $69(2)$ $-10(1)$ $36(1)$ $-9(1)$ $N(11)$ $54(2)$ $59(2)$ $38(1)$ $4(1)$ $19(1)$ $5(1)$ $5(1)$ $C(12)$ $45(2)$ $55(2)$ $41(2)$ $41(2)$ $4(1)$ $12(1)$ $-7(1)$ $C(13)$ $56(2)$ $72(2)$ $41(2)$ $3(2)$ $14(2)$ $11(2)$ $-15(2)$ $C(14)$ $71(2)$ $81(3)$ $48(2)$ $14(2)$ $11(2)$ $11(2)$ $-16(2)$ $C(15)$ $71(2)$ $69(2)$ $65(2)$ $26(2)$ $8(2)$ $4(2)$ $4(2)$ $5(2)$ $6(16)$ $56(2)$ $65(2)$ $59(2)$ $8(2)$ $14(2)$ $5(2)$ $6(16)$ $6(2)$ $65(2)$ $69(2)$ $61(2)$ $11(2)$	C(7)	74(2)	81(2)	50(2)	-5(2)	26(2)	-3(2)
O(10) $58(1)$ $96(2)$ $69(2)$ $-10(1)$ $36(1)$ $-9(1)$ $N(11)$ $54(2)$ $59(2)$ $38(1)$ $4(1)$ $19(1)$ $5(1)$ 5	S(8)	53(1)	69(1)	52(1)	-1(1)	22(1)	9(1)
N(11) $54(2)$ $59(2)$ $38(1)$ $4(1)$ $19(1)$ $5(1)$ $C(12)$ $45(2)$ $55(2)$ $55(2)$ $41(2)$ $4(1)$ $12(1)$ $-7(1)$ $-7(1)$ $C(13)$ $56(2)$ $72(2)$ $41(2)$ $3(2)$ $14(2)$ $11(2)$ $-15(2)$ $C(14)$ $71(2)$ $81(3)$ $48(2)$ $14(2)$ $11(2)$ $11(2)$ $-16(2)$ $C(15)$ $71(2)$ $69(2)$ $65(2)$ $26(2)$ $8(2)$ $4(2)$ $26(2)$	O(9)	70(2)	87(2)	61(2)	6(1)	15(1)	26(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(10)	58(1)	96(2)	69(2)	-10(1)	36(1)	-9(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(11)	54(2)	59(2)	38(1)	4(1)	19(1)	5(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)	45(2)	55(2)	41(2)	4(1)	12(1)	-7(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)	56(2)	72(2)	41(2)	3(2)	14(2)	-15(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)	71(2)	81(3)	48(2)	14(2)	11(2)	-16(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)	71(2)	69(2)	65(2)	26(2)	8(2)	4(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)	56(2)	65(2)	59(2)	8(2)	14(2)	5(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17)	45(2)	49(2)	41(2)	3(1)	7(1)	-4(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18)	44(2)	54(2)	39(2)	2(1)	9(1)	-3(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19)	57(2)	57(2)	36(2)	5(1)	17(1)	4(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20)	49(2)	50(2)	42(2)	0(1)	14(1)	1(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)	55(2)	57(2)	56(2)	-3(2)	18(2)	-1(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	63(2)	61(2)	52(2)	-15(2)	9(2)	7(2)
C(25) $62(2)$ $56(2)$ $46(2)$ $-1(1)$ $22(2)$ $-4(2)$ $C(26)$ $52(2)$ $81(2)$ $56(2)$ $-10(2)$ $9(2)$ $4(2)$ $C(27)$ $67(2)$ $91(3)$ $48(2)$ $4(2)$ $9(2)$ $23(2)$ $C(28)$ $69(2)$ $76(2)$ $60(2)$ $1(2)$ $26(2)$ $-18(2)$ $C(29)$ $77(3)$ $108(3)$ $71(3)$ $-22(2)$ $16(2)$ $-34(2)$	C(23)	59(2)	89(3)	48(2)	-16(2)	16(2)	6(2)
C(26) 52(2) 81(2) 56(2) -10(2) 9(2) 4(2) C(27) 67(2) 91(3) 48(2) 4(2) 9(2) 23(2) C(28) 69(2) 76(2) 60(2) 1(2) 26(2) -18(2) C(29) 77(3) 108(3) 71(3) -22(2) 16(2) -34(2)	C(24)	69(2)	73(2)	43(2)	5(2)	24(2)	3(2)
C(27) 67(2) 91(3) 48(2) 4(2) 9(2) 23(2) C(28) 69(2) 76(2) 60(2) 1(2) 26(2) -18(2) C(29) 77(3) 108(3) 71(3) -22(2) 16(2) -34(2)	C(25)	62(2)	56(2)	46(2)	-1(1)	22(2)	-4(2)
C(28) 69(2) 76(2) 60(2) 1(2) 26(2) -18(2) C(29) 77(3) 108(3) 71(3) -22(2) 16(2) -34(2)	C(26)	52(2)	81(2)	56(2)	-10(2)	9(2)	4(2)
C(29) 77(3) 108(3) 71(3) -22(2) 16(2) -34(2	C(27)	67(2)	91(3)	48(2)	4(2)	9(2)	23(2)
	C(28)	69(2)	76(2)	60(2)	1(2)	26(2)	-18(2
O(30) 77(2) 173(3) 83(2) -14(2) 39(2) -36(2	C(29)	77(3)	108(3)	71(3)	-22(2)	16(2)	-34(2
	O(30)	77(2)	173(3)	83(2)	-14(2)	39(2)	-36(2

C(31)	66(2)	80(3)	93(3)	15(2)	17(2)	10(2)
C(32)	59(2)	55(2)	68(2)	8(2)	18(2)	-1(2)
C(33)	67(2)	61(2)	76(3)	4(2)	37(2)	8(2)
C(34)	77(2)	56(2)	54(2)	4(2)	33(2)	3(2)
C(35)	53(2)	52(2)	54(2)	3(1)	23(2)	-5(1)
C(36)	61(2)	64(2)	55(2)	1(2)	24(2)	6(2)
C(37)	72(2)	72(2)	53(2)	1(2)	21(2)	5(2)
S(38)	52(1)	60(1)	54(1)	6(1)	21(1)	-7(1)
O(39)	74(2)	70(2)	63(2)	-5(I)	12(1)	-26(1)
O(40)	58(1)	86(2)	66(2)	15(1)	33(1)	6(1)
N(41)	59(2)	50(1)	44(2)	$\theta(1)$	21(1)	-5(1)
C(42)	49(2)	54(2)	40(2)	$\theta(1)$	10(1)	3(1)
C(43)	64(2)	74(2)	45(2)	-3(2)	14(2)	6(2)
C(44)	65(2)	77(3)	61(2)	-19(2)	5(2)	13(2)
C(45)	56(2)	64(2)	80(3)	-20(2)	9(2)	7(2)
C(46)	44(2)	60(2)	73(2)	-3(2)	15(2)	-5(1)
C(47)	42(2)	52(2)	51(2)	5(1)	16(1)	6(1)
C(48)	51(2)	54(2)	45(2)	5(1)	19(1)	4(1)
C(49)	58(2)	57(2)	42(2)	-2(1)	22(2)	-1(2)
C(50)	51(2)	55(2)	50(2)	I(I)	16(2)	-4(1)
C(51)	81(3)	63(2)	61(2)	6(2)	29(2)	9(2)
C(52)	88(3)	81(3)	61(2)	6(2)	28(2)	-34(2)
C(53)	71(2)	82(3)	70(2)	7(2)	36(2)	-7(2)
C(54)	77(3)	71(2)	52(2)	-8(2)	22(2)	-7(2)
C(55)	62(2)	61(2)	45(2)	-3(1)	20(2)	-4(2)
C(56)	58(2)	126(4)	58(2)	22(2)	19(2)	9(2)
C(57)	74(3)	101(3)	55(2)	10(2)	3(2)	-18(2)
C(58)	69(2)	79(2)	69(3)	-4(2)	28(2)	15(2)
C(59)	85(3)	88(3)	71(3)	14(2)	15(2)	24(2)
O(60)	90(2)	199(4)	88(2)	12(2)	50(2)	51(2)

Table 5. Hydrogen coordinates (x 10°) and isotropic displacement parameters ($\mathring{A}^{2}x$ 10°) for 00094.

	<i>x</i>	у	z	U(eq)
*****	122.41	2575	102.47	121
H(1A)	12341	3575	10247	121
H(1B)	12152 13141	4086 3471	9150 9236	121
H(1C) H(3A)	13141	3471	9230 6921	121 83
н(за) Н(4А)	9501	2852	5709	78
H(6A)	8604	2236	8829	76 75
H(7A)	10395	2230 2871	9999	73 80
H(13A)	8247	795	8070	68
H(13A) H(14A)	9450	-147	8884	81
H(15A)	10767	-720	7846	85
H(16A)	11029	-319	5977	72
H(19A)	8651	1709	4133	59
H(20A)	11327	446	4270	56
H(21A)	9334	-212	3225	67
H(22A)	10764	-477	1948	73
H(23A)	11603	384	993	78
H(24A)	10822	1470	1243	72
H(25A)	10370	1663	3253	64
H(26A)	7786	218	1374	77
H(26B)	7776	714	2461	77
H(27A)	8464	1511	1439	84
H(27B)	8534	1008	379	84
H(29A)	13924	1682	5205	130
H(29B)	12756	1236	5483	130
H(29C)	12463	1990	5147	130
H(31A)	18165	-3777	1134	121
H(31B)	17383	-3868	2162	121
H(31C)	18352	-3250	2203	121
H(33A)	16718	-3434	-794	78

H(34A)	14811	-2875	-2007	71
H(36A)	13940	-2204	1076	70
H(37A)	15834	-2786	2284	78
H(43A)	13249	-772	162	74
H(44A)	14390	206	911	84
H(45A)	15717	744	-140	83
H(46A)	16047	318	-1954	71
H(49A)	13834	-1793	-3630	61
H(50A)	16596	-577	-3455	62
H(51A)	14728	174	-4498	80
H(52A)	16324	390	-5672	90
H(53A)	16915	-511	-6745	85
H(54A)	15945	-1542	-6566	79
H(55A)	15414	-1726	-4596	66
H(56A)	13160	-193	-6348	96
H(56B)	13096	-707	-5305	96
H(57A)	13612	-1492	-6441	96
H(57B)	13818	-968	-7421	96
H(59A)	18934	-1935	-2605	124
H(59B)	17406	-2154	-2674	124
H(59C)	17888	-1420	-2311	124